Hi, my name is Petr Filipsky, and I've been part of the Qminers C++ team for the

past seven years.
Today’s presentation is called Level Up the Book.

I've packed a lot of material into the slides, so let’s dive right in.

e Who we are
e What we are doing
e How wedoit

Let me start by saying a few words about Qminers - the company where | work.

e Who we are
Qminers was founded thirteen years ago, and we're based in the center of
Prague, in the beautiful Spork Palace on Hybernska Street.

e What we do
We specialize in high-frequency trading - that is, algorithmic trading on global
financial markets.
Our software trades fully autonomously on exchanges around the world, using
mathematical models developed by our in-house analysts.

e What we use
We develop primarily in C++ - there are six of us on the C++ team, and we're
currently looking to hire at least two more engineers.
We also use Python - roughly the same number of developers - for data
visualization, reporting tools, and analytical infrastructure that supports our
team of about 25 analysts.

e 2024 ... Landscape

This isn’t my first time here at Matfyz - in fact, | studied here many years ago.
And last year, | also gave a talk here on St. Nicholas Day.

The talk was called Digging Deep for Performance, and it was more of a general
overview - a broad map of software optimization techniques.
So if you're interested and haven'’t seen it yet, here’s the link.

After that talk, | got some feedback from the audience saying | could’ve gone deeper -
that they'd be interested in real production examples, not just isolated toy cases.
So this year, that’s exactly what I'm going to do.

https://tinyurl.com/fr8us45d

e 2025... Deep Dive

This year, we’re picking up where we left off - but with a slightly different approach.
Instead of covering a broad range of topics, I've chosen one specific data
structure, and we’ll try to tune it in every possible way - layout, cache locality,
branching, SIMD... the full detail.

So rather than going wide, we’re going deep - all the way down to the level of
instructions and nanoseconds.

Now, just so no one gets scared off - let me add a quick disclaimer:

What I'll be showing today mostly comes from our C++ team, and even there, it's for
very specific high-performance cases.

Most of our codebase is pretty normal C++ code (except for a certain level of hygiene
- well designed memory management), but definitely not fine-tuned to this level of
detail.

Also our Python team and analysts work on very different kinds of problems, at a very
different level of abstraction.

But today I'll focus on the kind of development | know best - C++ and especially on
the techniques | believe are broadly useful in any system where performance really
matters.

Trading desk

Colocation

Trading Aplication

/ Strategy \
o T

FPGA
Book I .
1F .
- RU les LLLCCLCETECEER

B
k Strategy /

Let me start with a quick motivation - why speed matters in our field.

Prices

Matching
STo)
Qs

Book

Exchange

This diagram shows a simplified view of a modern trading system. On the right, we have the
exchange, which you can think of as a central server that receives orders from different traders,
maintains the order book, and uses a matching engine to pair up buy and sell orders. The results are

then shared with all participants. On the left is the trading application, which acts like a state machine.
It processes updates from the exchange and maintains its own internal view of the world -
own copy of the order book.

including its

Inside this app, one or more strategies are running, designed to react as fast as possible to market
changes - by modifying, canceling, or submitting new orders.

Now, even if the trading app is colocated with the exchange - meaning it runs in the same datacenter -
there’s always a delay. Why? Because information is limited by the speed of light - roughly 1
nanosecond per 30 cm. That delay means your internal order book is always slightly outdated. The
faster your software reacts, the more accurate your view of the market, and the more competitive your

strategy. The diagram also shows that some parts of the logic can run outside the CPU - on dedicated

hardware like FPGAs, which can react in tens or hundreds of nhanoseconds, compared to several

microseconds on CPU.

Finally, on the far left, there's the workstation used for supervision - required by regulator. From here,
operators can tune strategy parameters or shut everything down in an emergency.

But in reality, the trading app is fully autonomous. If there's a bug, it can lose money much faster than
a human can react.

So - the order book lives both inside the exchange and inside our trading application. It's the central
data structure that represents the market state - and it's exactly what we’re going to analyze and

optimize in today’s talk.

e Limit order book
o Possible data structures
o Operation complexities (Lookup, Insert+Delete, Enumeration)
e Data analysis
o Choosing the right tool for the job
e (Case study - Data Structure Design
o Detailed description
e Hardware-based optimizations
o Branch predictor (branchless code)

o Memory system (data-oriented & |-cache/D-cache friendly design)
o Superscalar CPUs (SIMD code)

So let’s take a look at today’s agenda. We're going to use the Limit Order Book as our
example.

But my goal is broader: | want to focus on designing data structures that are both
performance-oriented and well-aligned with modern hardware.

1) We’'ll start with an overview of possible existing data structures.

2) Then we’ll move into our data analysis. We'll start by looking at a real trading data
and use it to build a realistic benchmark.

3) Then we’ll dive into the actual case study, breaking down each design step for the
limit order book and showing how we anchor it in reality.

4) Finally, we'll wrap up with hardware-based optimizations.

We'll talk about how to make our code more predictable and branchless, lay out data

to fit well into the instruction and data caches, and use the prefetcher and SIMD
instructions effectively.

By the end of this presentation, you’ll have a reusable playbook for designing complex data
structures that can be applied not just in finance, but in any performance-critical field.

ASK side
Sell limit order e Record of limit orders

Liquidity
(lots) . .
o o Single security (contract)

e Limit orders

mid o Price (discrete - tick size)
pnce o Quantity (discrete - lots)
bid .
pnce ﬂ e Two S|des

LI B B B B B

I T B M B I
=

Buy limit order

] a[Sk (Zr;c;) o Bid (buyers)

E price

] o Ask (sellers)

. fick size e Prices sorted

] — . . .
i spread size o Best price - highest bid
] o Best price - lowest ask
L

T

BID side

All right, let’s start with the basics. What you see here is a Limit order book, which is
essentially the core data structure in electronic trading. You can think of it as a live,
constantly updated list of buy and sell orders for a single security - be it a stock, futures
contract, or some other traded asset.

You can see that there are two sides:

) On the left, the bid side - buyers saying, ‘/ want to buy this much at this price.’
° On the right, the ask side - sellers saying, 1 want to sell at this price.’

Each bar here shows a limit order - an instruction to buy or sell only if a certain price is met.

° Prices are discrete - they move in steps called ticks, and the smallest price change
is called the tick size - like one cent, or a fraction of a cent.

° Orders are sorted first by price, and then by arrival time at the same price level.
That's called price-time priority - better price wins, and for ties, the first order in gets
executed first.

Note that this is a view of just a single contract (e.g. a single futures expiration). In reality
there are many of those. They can be kept separately, or all mixed in a single storage. That is
an implementation/engineering choice.

Structure

Hash + sorted list o(1) O(L)/O(1) | Fast lookup & delete, linear insert, node based content

RB/AVL/B+ trees | O(logN) | O(log N) | Balanced depth, deterministic lookup times, easy

Splay trees O(log N) | O(log N) | Variable memory locality, Self-adapts to hotspots
Sorted vector O(log N) O(N) Excellent locality, Fantastic for small-mid N
Buckets + Bitset o(1) o(1) High mem if U large, excellent locality

Lookup | Ins/Delete | Notes

leads to pointer chasing during enumeration

next/prev, cache unfriendly (except B trees)

Top-tier latency if U reasonable

So on this slide, we’re looking at a few common data structures you might consider
for implementing an order book, each with its own pros and cons.

If you go with a hash map and a sorted list, you’ll get fast lookups and
deletes, only insertions and enumeration can be a bit slower.

Then you have balanced trees like Red-Black or AVL trees, which give you
reliable log-time performance, but they’re not always the best for cache
usage.

Splay trees may be a solid choice because of their self-adaptability, but may
be too heavy for our purpose.

Sorted vectors have a great locality properties and so are really friendly for
the modern hardware, but have higher lookup and update asymptotic
complexity.

And if raw speed is your top priority and you're not worried about memory use,
then using Buckets with a Bitset can give you really low latency.

https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/AVL_tree
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.cppreference.com/w/cpp/container/flat_map.html
https://github.com/charles-cooper/itch-order-book

Key = {cid, side, price}

BID

Worst -

cid 1 (tick = 0.5) 98.0 [—— 98, @

Spread =3

Worst : Best Best Worst
ez - M- 0888
Spread =1 .b
Worst Best Best Worst
cid 3 (tick = 1) a 100 101 102 H 104 105 106

pread = 2

I >

So let’s take a closer look at the hash lookup and sorted list combination.

It's a nice hybrid approach that gives us really fast lookups using a hash table, and
then we maintain order with a sorted linked list.

The hash table lets us jump directly to the right price level quickly, and from there, we
can easily update or remove orders.

The trade-off is that when we’re traversing the list, we might run into some pointer
chasing because the nodes aren’t stored contiguously in memory, which isn’t the
most cache-friendly choice. Also insert must find next and previous nodes to
connect the new item to the linked list.

Still, it's a solid approach if you want that balance of fast lookups and maintaining
order.

e Cache hierarchy (3 layers)

O Levell..1lns N
O Level2..7ns
O Level3..20ns N | Porformance
O RAM..100ns § ’ﬁe"’ Gap
: N
e CPU ideal throughput £ Lo
o 20instr./ns N \)Q J
[0 OQ ea\'S\
(1 Core * 4 IPC * 5GHz) o e\le"y)\
e L3 cache miss penalty wemory
o Upto 1:2000'!
Time

To better understand why linked list traversal is slow, let’s take a moment to look at
what memory latency really means in practice.

Yes - RAM stands for Random Access Memory, but in reality, memory isn’t one big
flat space. It's a multi-level hierarchy.

The key problem is that processor speeds have increased much faster than
memory speeds. Over the years, CPUs have improved by about 60% per year,
while memory access speeds have improved by less than 10%.

This mismatch means that the processor often ends up waiting for data, which
becomes a major bottleneck and limits overall system performance.

Modern systems try to hide this latency using multiple levels of cache. But every
time you make a random memory access, like when chasing pointers in a linked list,
you pay for it - because you may need to go through several layers of cache before
you get your data.

And that’s exactly what we want to avoid in performance-critical code.

e Cache hierarchy (3 layers)

O Levell..lns
O Level2..7ns
O Level3..20ns
O RAM..100ns
e CPU ideal throughput
o 20instr./ns @ || @ L] @ L] @ L

(1 Core * 4 IPC * 5GHz)
e L3 cache miss penalty LLC (L3)

o Upto1:2000! @ﬁ @ﬁ @ﬁ @ﬁ
e

We start at the top of the memory hierarchy with L1 cache - it's the fastest and sits
closest to the CPU.
Then comes L2, L3, and finally RAM, which is about 100 times slower than L1.

In the animation you’ll see in a moment, each level has a different access latency -
and if we want high performance, we need to take that into account.

This brings us to a key concept: the principle of locality.

e Temporal locality means we often access the same value - or something
recently used - again.

e Spatial locality means that if we access a certain memory address, we’re
likely to access nearby addresses soon after.

Every memory access, even when we read just a single byte, actually loads an entire
cache line - typically 64 bytes on most systems. And if your access pattern is
predictable - say, linear or with a fixed stride - then the hardware can guess where
you’re going next and pre-load that data into cache ahead of time.

That logic is called the prefetcher.

And this is exactly why data-oriented design - where you shape your structures
around how data moves through memory - can make your code run dramatically
faster.

e Cache hierarchy (3 layers)

Machine (226768 total)

O Levell..lns pactge (50
| NUMANode L9 P29 (226768)]
O Level 2 7 ns l 13 (328) H L3 (3248) |EE:E: . | 13 (3248) l
b Gkt
[Lz (1624k8) || L2 (1624K8)]D oo | L2 (1624KB) Hu (1024KB) || L2 (1624KB) ID oo |LZ (1624k8) | | L2 (1624KB) ||L2 (16248) |E|DE| | L2 (1624K8) l
16x total 16x total 16x total
O Le\/el 3 20 ns fun (48KB) | |Llﬂ (48KB) | |un (48KB) |]uu (48KB) | |ua (48KB) ‘ |un (48KB) | |un (48KB) ‘ Iun (48KB) | |le (48KB) |
fm (32KB) | |L11 (32KB) | |Ll1 (32KB) | [Lh (32KB) | |Lh (32KB)] |Lh (32KB) | |L11 (32KB)] |Lh (32¢B) | |L11 (32KB) |
O RAM .. 100 ns Core L#0 Core L#1 Core 1215 | [Core L#16 | | Core L217 Core L#31 Core L#112 | | Core L#113 Core L#127
PU L20 PU L2 PU L£30 PU LER2 PU L#34 PU L#62 PU LE24 PU L£226 PU L£254
H P20 [} Pels P21 p217 PE3l P#112 Pe113 P2127
L C P U Id €a l' th rou g h p Ut PU L#1 PU L#3 PU L£31 PU L#33 PU L#35 PU L263 PU L#225 PU L£227 PU LSS
20 inst P2128 129 P2143 P2144 P218s P2159 P20 P2241 P£255
) instr./ns

(1 Core * 4 IPC * 5GHz)

e L3 cache miss penalty
o Upto 1:2000!

To make things more concrete - here’s the machine we used for the benchmarks in this talk.

It's an AMD EPYC 9745 with 128 cores and 2TB of memory (no NUMA - all accessible from
any of the cores). Each group of 16 cores shares a 32 MB L3 cache - that's the last-level
cache you see repeated in the diagram. Of course, every core also has its own L1d cache
(around 48 KB) and L2 cache (about 1 MB).

The whole machine has around 2 TB of RAM, and in our setup, it runs as a single NUMA
node - which means we avoid cross-socket latency.

But still, L3 is shared within core groups, so if we're optimizing for latency, it makes sense
to:

° pin threads to specific cores,
° and sometimes even disable some cores, to give the active ones more L3 cache to
themselves.

That gives both the prefetcher and the cache system the best chance to work effectively.

And yes - this is the kind of hardware we run our code on every day (also all benchmarks
presented here are measured on this machine).

So if this environment sounds interesting to you, feel free to come talk to us after the
presentation - we’re always happy to chat, or even schedule an interview if you’re curious
about joining Qminers.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \
-e "cycles:u,instructions:u,branches:u,branch-misses:u, cache-references:u,cache-misses:u" ./benchmark
Events disabled
Context: contracts=100, elements=21, lookups=1000000, enumerations=1000000, erases=125000, avgBest=3.75%, avgAny=47.63%
flat_book<int32_t, BigVector>:

200*2*1000000 levels enumerated in 4551 ms. (avg=210.00)

Performance counter stats for './benchmark':

16,865, 640,277 cycles:u (83.34%)
52,211,180,857 instructions:u # 3.11 insn per cycle (83.33%)
9,402,154,488 branches:u (83.33%)
1,025,319 branch-misses:u # 0.01% of all branches (83.33%)
10,608, 808,425 cache-references:u (83.34%)
8,106 cache-misses:u # 0.00% of all cache refs (83.33%)

10.145595968 seconds time elapsed

Let's zoom in on just one operation: enumerating the book from best to worst.
Using the linux perf measurement tool (using control pipes showed in a bonus slide
below), | bracket only the enumeration loop, so the counters you see are for that
section alone - no init, no teardown.

First, the flat_book version. Enumeration is a straight, contiguous walk over two
arrays (keys then values).

That’s exactly what caches and the hardware prefetcher like.

The result: almost no cache misses and very high IPC - the CPU streams through
the data.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \
-e "cycles:u,instructions:u,branches:u,branch-misses:u, cache-references:u,cache-misses:u" ./benchmark
Events disabled
Context: contracts=100, elements=21, lookups=1000000, enumerations=1000000, erases=125000, avgBest=3.75%, avgAny=47.63%
hash_book<int32_t, BigVector>:

200*2*1000000 levels enumerated in 8629 ms. (avg=210.00)
LevelBook load factor: 0.6835381235251038

Performance counter stats for './benchmark':

31,902,390, 545 cycles:u (83.33%)
36,611,551,617 instructions:u # 1.15 insn per cycle (83.33%)
9,002,411,279 branches:u (83.34%)
1,261,783 branch-misses:u # 0.01% of all branches (83.34%)
18,800,169,498 cache-references:u (83.34%)
56,569,894 cache-misses:u # 0.30% of all cache refs (83.33%)

15.022031156 seconds time elapsed

Now compare that to the hash map. A hash table is great for random O(1) lookups,
but it's unordered.

To enumerate in price order you end up following linked lists and jumping around
memory.

The prefetcher can’t predict those addresses, so you see a lot of data-cache misses
and a much lower IPC.

Wall-clock time goes up too.

Note that even though the number of instructions went significantly down (from 52B
down to 36B), it takes significantly more cycles as the number of instructions per
cycle drops from ~3 to ~1.

| call this a horizontal traversal example - we’re walking along the price axis.

It shows how layout decides whether the CPU streams or stumbles from miss to miss.
On the next slide we’ll look at the vertical traversal problem - misses caused by
hash collisions inside the table itself.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack"
-e "cycles:u,instructions:u,branches:u,branch-misses

Events disabled

Context: contracts=100, elements=21, lookups=1000000

hash_book<int32_t, BigVector>:

200*2*1000000 levels enumerated in 8629 ms. (avg=210
LevelBook load factor: 0.6835381235251038

Performance counter stats for './benchmark':
31,902,390, 545 cycles:u
36,611,551,617 instructions:u

9,002,411,279 branches:u

1,261,783 branch-misses:u
18,800, 169,498 cache-references:u
56,569,894 cache-misses:u

15.022031156 seconds time elapsed

template <typename Level>

inline const Levelx LevelTableLinkedListImpl<Level>::getTopLevel(bool isSell) const
{
return m_levellisSelll;
mov (%rcx) , %rax
for (bool isAsk : {false, true}) {
auto level = book.get_best(cid, isAsk)
evel; level = level_next(level))
4 je 7e
data16 cs nopw @x8(%rax,%rax,1)
xchg %ax, %ax
avg += level_val(level);
vaddsd 0x30 (%rax) ,%xmm@, %xmmd
return m_next;

for (; level; level = level next(level))

mov 0x8(%rcx), %¥rax
test %rax, %rax

v je 9e
nop

avg += level_val(level);
vaddsd 0x30 (%rax) ,%xmma, %xmme

for (; level; level = level next(level))
t t

gr 0

for (int cid : ctx.contracts) {
add $0x4, %rdx
cmp %rdx, %rsi

1 jne 50

for (size_t e = @; e < ctx.enumerations; ++e) {

ELL $0x1,%r8

cmp %10, %r8
jne 3e
vmovsd %xmme, 0x8 (%rsp)

Here is a detailed visualization of hotspots in perf report.
You can see concrete instructions responsible for most cache misses.
And it is clear that they are the ones dereferencing the m_next pointer inside the

linked list.

Close addressing (separate chaining) [e] [ke J [e] [ke] [ke M R]

e std::unordered_map
(stable allocators) HEEEEEEEEEEEN

e Cache unfriendly — slow

e Easy to build price level chains

Open Addressing (linear probing)

e boost::unordered_flat_map [key“] [keyz J [keys] ["ey3]["ey1 Mkeys]
(unstable allocators)
e (Cache friendly — much faster EEEEEEEEEEEEE

e Hard to build price level chains w

Now, earlier we mentioned that pointer chasing becomes a performance issue not
just in price level traversal, but also in the hash table itself - especially when you hit
collisions, meaning two or more keys land in the same bucket.

Traditionally, the standard approach was closed addressing, or separate chaining -
like in std: :unordered_map. Colliding entries are stored in a linked list, or chain,
attached to each bucket. That's simple, and it gives us stable memory addresses,
which is great for linking entries together - for example, to build price level lists.

But it's cache unfriendly - because every lookup or traversal jumps through pointers,
leading to slower performance on modern CPUs.

More modern hash tables - like boost: :unordered_flat_map - use open
addressing, typically with linear probing. Here, colliding entries are just stored in the
next available slot in the array itself. That's much more cache friendly, and in
practice, much faster.

However, the downside is: the entries move around in memory - so we lose that
stability. That makes it hard to form things like best-to-worst price level chains,
because you can't just maintain pointers between price levels anymore.

So in a way, we're forced back into that old-world model of node-based containers,
which isn’t ideal for high-performance trading systems.

simba::SimMarke.. [l
gminers::simulato.. |
|

J ‘qminers::preproce.. |

ination<trc::atom:Cry. aminer.. [a.- ll ‘gminers::simulato.. |
ead <trc::taefl::HistoricalFileLink | b R gminer.. GEENE gminers:simulato.. ||
trc::atom: DataF'leChannektrc :taefl::HistoricalFileLink, trc::atom:: TMDPProcessor<trc::atom::Messag.. non-vi.. —l_
| gminers::preproce.. ||
| non-virtual thunk.. |
|

gminers::trader::QminersTrader::runimpl
fam ners TR e R e T g 1" -5/ iator Re..
|

|
A THN]

Il frunTrade _libc_start main runTrader
I

Here’s a real-world example where all the things we’ve been talking about - data
structures, memory locality, and cache behavior - came together... but unfortunately,
not in a good way.

We were using hash tables with collision chains, as | showed earlier - with a
preconfigured bucket array size.

Then we onboarded a new market with very fine price granularity and high
volatility, and we made a mistake: We didn’t adjust the hash table size
accordingly.

The result? Collision chains became long, and our lookups degraded from O(1) to
something closer to linear scans through linked lists.

Combined with modern hardware - where random memory jumps mean cache
misses and branch mispredictions - the performance dropped dramatically.

On this slide, you can see a flame graph - the red areas show exactly where the
hotspots were. And yes, they’re all related to hash table lookups in our order book
logic.

https://github.com/brendangregg/FlameGraph

Lines of code 1

Speedup (callgrind) 1-3%
| |
|% |‘ ﬁ Speedup (perf) 30-40% |
Gt | un
i 0 @i Jar_lb:.. nl
| 0 NGminEs | |0 | g | 'gm.
Ul 1 L | \qminers.. @S o gmin: & cre.. S] @
1 Wl | gminers.. || gminers::preprocessor::(.. T zng_inflate H qm..
] !

gminers::.. gminers::preprocessor::DataF.. i gz_read
gminer 3
gminers::p..

| _ gminers::trader::QminersTrader::runimpl

\ gminers: . [qminerstrader:Qminerstradersrgn
{gminers:.. runfrader
Wnfaderman o oming

1] 1@ main __libc_start_main runT. |

unk... N e —— i)0

gminers_trader_

How did we fix it? Simple: we resized the hash table to reduce the load factor - and
that solved it. On this slide, the new flame graph confirms the improvement. And in
the bonus slides, I've included detailed perf measurements showing how
performance gradually degrades as load factor increases.

What'’s interesting is that our Callgrind profiling didn’t catch it. It showed only a small
increase in instruction count - just a few percent. But once we started measuring
actual runtime and clock cycles using perf, it was immediately clear: 30-40%
slowdown in key parts of the code.

https://github.com/brendangregg/FlameGraph

Focus on real market data, not toy workloads

Log every book access over a full day

Look at the hottest books and most liquid contracts (representative load)
Turn findings into a synthetic benchmark that mirrors reality

Optimize for the observed pattern

Measure wall-clock time and counters

So far, we’ve looked at different implementation options, and we’ve examined in more
detail where a typical approach starts to fall short.

But before we even begin choosing a new data structure, we first need to understand
how the order book is actually used during real-world trading.

So | did the most logical thing - | logged every access to the order book over the
course of a full trading day.

We’'ll analyze this real data and use it to build a synthetic benchmark that closely
mirrors actual market behavior.

That way, we can test different implementations under realistic conditions.

Because the goal isn’t to optimize for some theoretical scenario - it's to optimize for
what actually happens on the market.

Log stats (single product, single day, log size ... 20GB, 316M messages, 5K msg/s average, 200K msg/s peek):

$ wc ~/tmp/flat-book.log
316659738 2216618137 20794534012 ~/tmp/flat-book.log

Message preview (time, instance pointer, method name, cid, side, price, resulting position, map size):

$ grep flat_book ~/tmp/flat-book.log | head -n5000000 | tail -n5

23:20:12.586800 0x16456dad flat_book::get_best(0, false, nan) ... pos:0, size:0
23:20:12.586800 0x16456dad flat_book::get_best(®, true, nan) ... pos:0, size:0
23:20:12.586800 0x16456da@ flat_book::get_best(1, false, nan) ... pos:0, size:0
23:20:12.586800 0x16456da@ flat_book::get_best(1, true, nan) ... pos:0, size:0
23:20:12.586800 0x16456dad flat_book::get_best(2, false, nan) ... pos:0, size:0

Split by instance (dominant one has 230M accesses):

232475369
41143323
24476560
10130623

2940421
2886269
2607158

0x267fdc88
0x1b708ecad
0x19e6b160
0x16456dad
0x16e0e108
0x163d3fc8
0x2692c538

$ grep "flat_book" ~/tmp/flat-book.log | cut -d" "

-f2 | sort | uniq -c | sort -nr

So | have instrumented the system and logged every book access for a sample day
on one product: about 20 GB of logs and 316 M events.

Each record captures the book instance, method, contract, side, price, and the
resulting level index and table size - number of price levels.

There are several book instances; we’ll focus on the hottest one with ~230 M
accesses.

From this we will hopefully see real access patterns - best level jumps, neighbor
walks, random lookups - which will guide the structure we choose.

Split dominant instance by method (get_best() gets called 150M timesl):

$ grep *0x267fdc88 ~/tmp/flat-book.log | cut -d":" -f5- | cut -d"(" -f1 | sort | uniq -c | sort -nr
154294356 get_best
54179875 get
21753740 next
2186814 get_or_create
30375 get_or_create<insert>
29975 erase
234 get_or_create<alloc>

Note that other instances may have different histogram:

$ grep *0x19e6b160 ~/tmp/flat-book.log | cut -d":" -f5- | cut -d"(" -f1 | sort | uniq -c | sort -nr
24336970 get
104946 get_or_create
17322 erase
17238 get_or_create<insert>
84 get_or_create<alloc>

Here’s what we actually call most.

On the hottest book instance, get_best dominates - about 150M calls - then get
(price lookup) and next (a horizontal traverse).
Inserts/erases are two orders of magnitude lower.

So the workload is read-heavy, with a huge bias to best-of-book and short neighbor
walks.

But it’s not uniform: another instance flips the order - there, get wins.
Takeaway: our structure must make best-of-book O(1) and neighbor traversal
sequential/cache-friendly, while still giving fast price—level lookups.

That’s exactly why the flat, contiguous layout could fit this pattern

Most liquid contract:

$ head ~/tmp/flat-book-74.1og

0x267fdc88 flat_book::get_or_create<alloc>(74, false, -18) ... pos:0, size:1
0x267fdc88 flat_book::get_best(74, false, -10) ... pos:0, size:1

0x267fdc88 flat_book_level::next(74, false, -10) ... pos:1, size:1
0x267fdc88 flat_book::get_best(74, false, -10) ... pos:0, size:1

0x267fdc88 flat_book_level::next(74, false, -10) ... pos:1, size:1
0x267fdc88 flat_book::get_best(74, false, -18) ... pos:0, size:1

0x267fdc88 flat_book_level::next(74, false, -10) ... pos:1, size:1
0x267fdc88 flat_book::get(74, false, -18) ... pos:@, size:1

0x267fdc88 flat_book::get(74, false, -18) ... pos:@, size:1

0x267fdc88 flat_book::get(74, false, -18) ... pos:0, size:1

Method call histogram (get () called 1.2M times):

=d":" —f3- ~/tmp/flat-book-74.log | cut -d"(" -f1 | sort | uniq -c | sort -nr
1246418 get
905319 get_best

—OF_Create
5970 next
208 get_or_create<insert>
194 erase

6 get_or_create<alloc>

Note that there are many contracts in the log.
Now we split the data by contract and focus only to the most liquid one.

For the most liquid contract (cid = 74) - get is a dominant method - called 1.2M
times (followed by get_best with 900K calls).

$ grep
920516
168932
66116
20891
17726
8107
5165
3945
3670
3568
3516
3504
3458
3427
3420
3375
2711
1209
1151
1148
863

Lookup position and table size histograms:

"::ge;(" ~/tmp/flat-book-74.1og | cut -d" "
pos:0,
pos:1, $ grep "::
pos:2, 312377 size:18
pos:3 307253 size:20
pos:4' 290918 size:17
pos'Sl 165739 size:19
pos:6' 148873 size:21
:7’ 7135 size:15
P°S;1A 5782 size:16
pos: 14, 5121 size:14
pos:8, 1153 size:13
pos:12, 1000 size:12
pos:13, 304 size:7
pos:13, 255 size:2
pos:11, 147 size:1
pos:9, 138 size:3
pos:1@, 66 size:4
pos:17, 42 size:6
pos:16, 34 size:11
pos:19, 30 size:5
pos:20, 20 size:8
pos:18, 17 size:10
14 size:9

Histogram of lookup positions and map sizes for most liquid contract:
(very small map and most lookups are at best positions)

-f6 | sort | uniqg -c | sort -nr

"::get(" ~/tmp/flat-book-74.1log | cut -d" " -f7 | sort | uniq -c | sort -nr

95% of lookups are at first three levels:

$ for T in @ 12 3 4 5; do short=8(grep "::get(" ~/tmp/flat-book-74.1log |
-f6- | grep -c "pos:[8-$I]"); long=$(grep "::get("
~/tmp/flat-book-74.1og | cut -d" " -f6- | grep -vc "pos:[0-8I]");

cut -d" "

result=$(echo
... Sresult

o -

"scale=2; 1@8*$short / (Sshort + $long)" | bc); echo "SI
done

. 89

. 73.

. 94.

85 %
.56
95 %

. 96

a b wWN =2 o

. .63
.. 98.
. 98.

05
70

Let's zoom in on get(price) -one of our hottest paths.

1)

2)

3)

The lookup position distribution is far from uniform. Most lookups are at first
three levels. That fits intuition - most action is at the best.
The book size is tiny - typically ~18—-21 levels. That's great news: inserts and

shifts are cheap at this scale.

The accumulated histogram is far highly skewed: ~74% hit the best level, 90%
within top 2, 95% within top 3.

Takeaway: We can beat a hash table by using a flat, contiguous layout with direct
index and a fast path for the top 1-3 levels.

Key generator

std::random_device rd;
std::mt19937 gen(rd());

Random keys

std::vector<price_t> result(size);
std::uniform_real_distribution<> dis(0.08, elements);
for (size_t i = @; 1 < size; ++i)

result[i] = static_cast<price_t>(dis(gen));

Hot keys
const std::vector<double> weights{ 920516, 168932, 66116, 20891, 17726, 8107, 5165, 3945, 3568, 3420, 3375,
3427, 3516, 3458, 3670, 3504, 1209, 2711, 1151, 1148, 863};
std::discrete_distribution<> dis(weights.begin(), weights.end());
for (size_t i = @; i < size; ++i)
result[i] = static_cast<price_t>(dis(gen));

To keep the lookup test fair, | generate the keys once with a single RNG and reuse
the same sequence for every container.

Two modes:

1) First, random levels using a uniform distribution over N prices - the worst

case, no locality.
2) Second, hot levels using a discrete distribution seeded from our real

histogram - retrieved directly from the log file.
That way we compare each structure both in a uniform world and in the

skewed, real world.

The runs are reproducible with a fixed seed, and the key generation happens
outside the timed region.

e 3rd party maps
O type ... array<byte, 1024>
o size=21
e 10M operations
o Create
o Insert/Delete
m Random keys

m Hotkeys
o Enumerate
o Lookup
m Random keys
m Hotkeys
m Fixed keys

400

350

300

Time (ms)

.i
I
o

Benchmark overview: lower is faster

W boost::unordered_flat_map
std::unordered_map

. std:map

B boost::map(red_black_tree)

W boost::map(avl_tree)

Emm boost::map(splay_tree)
std::flat_map

mmm boost:flat_map

In order to establish a baseline | have tested different maps - things like boost
and std unordered_map, flat_map, and std: :map - to see which one handles
a small order book best.

1) For both random and hot key lookups, unordered_flat_map was fastest
because it has O(1) hash lookup an keeps data contiguous which avoids

pointer chasing.

Tree-based std: :map and flat maps just aren’t as fast due to more

complicated binary search (splay_tree lookups are really slow).
2) For enumeration - which means traversing through the list in order,

flat_map was the best because it uses memory efficiently.

Node-based maps are just not as fast.

The unordered maps look fine for enumeration, but note that the enumeration

results here are skewed.

In a real order book, we need to walk the book from best to worst price, but these

maps enumerate in their own internal order (that is why they are called

“‘unordered”).

So while this shows raw speed, in reality, we’d have to add extra logic to get the order
we need (e.g. use the unordered_node_map and form linked lists in the

expected order).

3rd party maps

O type ... array<byte, 1024>

o size=21
10M lookups

o Fixed keys (0 ... 20)

16000

14000

12000

10000

8000

6000

4000

2000

Time (ms) for 10,000,000 lookups

Find (fixed keys)

—8— boost::unordered_flat_map
std::unordered_map

—e— std:map

—e— boost::map(red_black_tree)

—e— boost::map(avl_tree)

—8— boost::map(splay_tree)
std::flat_map

—8— boost::flat_map

ANV NG

Fixed key (index)

Alright, here’s the a special case of this benchmark.

We’'re hitting the each individual index millions of times, everything’s in the
cache, and we’re just measuring the raw instruction speed.

1) Open-addressing maps like unordered_flat_map come out on top (and
its performance is really stable).

2) Chaining unordered_map is significantly slower (but provides nice stable
performance) , and both tree-based maps and flat_map do more
comparisons during the binary lookup.

And also keep in mind, these are best-case numbers with everything hot in the cache
and perfectly predicted branches, so it is just a measurement of a pure instruction
throughput. In real life, we also have to consider what happens when data isn’t
perfectly cached and how well are the branches predicted.

So then you measure a histogram, so single data structure visualization would lion
something like this ... [see the green histogram].

If there is enough time, | have plenty of additional benchmarks at bonus slides
showing effects of cache-misses and branch-misses.

Takes modern HW into account

e D-cache friendly (“flat” storage)

o Temporal locality

o Spatial locality (Cache line and Prefetcher aware code)
e |-cache friendly (simple logic)

o Indexing

o Linear search
e Branch predictor friendly

o Mostly branchless code

o If branches, then predictable
e Superscalar CPU friendly

o Integral keys

o SIMD instructions

Aspire for best of both worlds (fast lookup and enumeration)

So let’s talk about how we design our structure to really fit modern hardware.
The idea is to get the best of both worlds:

1) Onone hand, an unordered_flat_map gives us those super fast O(1)
lookups, but it's unordered and the entries aren’t stable.
If we need a best-to-worst price list, we end up switching to something like an
unordered_node_map and start linking nodes together.
That means pointer chasing and cache misses.

2) On the other hand, a flat_map keeps everything nicely sorted by price,
so going through it is super fast.
But lookups become a branchy binary search and a bit slower.

Our situation is special: we only have about 20 levels and most of the action is at
the top 1 to 3 levels.

So instead of using a general-purpose map, we design for the hardware.

We keep everything flat and contiguous, sort by price, and calculate the index with
simple arithmetic.

That way it's D-cache friendly, easy for the prefetcher, and we could get
enumeration as fast as a flat_map and lookups as fast as a hash map.

So that sounds like a plan.

BID Key = {cid, side, price} ASK

S o >

Worst Best Best Worst
cid 1 (tick = 0.5) [98.0 I 98.5 I 99.0] [100.5 I 101.0 [101.5 [102.0]

’ Spreﬁi =37

Worst Best Best Worst Vector Of veCtOI’S

cid 2 (tick = 2) [92 I 94 I 96 I 98 100 I 102 I 104 I 106 }
A PY 1
ey O(1) lookup by cid
Worst Best Best Worst

(o e o

So instead of using a hash table with collisions, we keep price levels in nice, flat
arrays.

For each contract, the keys are just a sorted array of prices.

We can use the contract ID as a direct index - no hashing needed - so it's O(1)
access.

The big win is locality.

Updates hit the same small area of memory, so we stay in L1 or L2 cache, and the
prefetcher works great.

It also makes things cleaner: settings are per contract, bookkeeping is simpler, and
we can even shard by contract for concurrency if we want.

In short, we go from a big global structure to a per-contract view, which matches how
the data arrives and how the CPU likes it.

cid
1_””28 Avoid shifting the vector

uside
BID Key-(oid side, pricey ~ ® INserts/Deletes are expensive
. .
Woret e Push/Pop back is cheap

e Move best levels towards the end

[98.0 [98.5 [99.0 [99.5 }
cid 1 (tick = 0.5) Spread = 3

[102.0 J 101.5 I 101.0 I 100.5 [100.0 J
Worst Best Best

[—
ASK

The next step is to split the price array to two halves, so that each contract just has
a BID array and an ASK array, all neatly laid out.

And here’s another neat trick with vectors:
Instead of dealing with expensive inserts at the front, we arrange the vector so that
the best price level is always at the back.

For bids, prices go up from left to right, so the highest bid - the best price - is at the
end.

For asks, prices go down from left to right, so the lowest ask - the best price - is at
the end.

That means when the best price changes, we just push or pop from the back, which is
super fast and cache-friendly.

If we occasionally have to insert somewhere in the middle, that’s fine.

The book is small - around 20 levels - and any changes deeper in the book aren’t
so latency-sensitive anyway.

Most of the speed game happens at the top levels, so that's where we focus our
optimizations.

cid
T . Utilize discrete prices
int_price

'—v

Pside e Divide by tick size (precalculate inverse)
BID Key = {cid, side, int_price}
int32_t price2key(const auto& contract, double px) const {
Worst Best 5 return fast_round(px * contract.invtick);
Itiplier = 2.0 .
— [L9¢ [e [L [ke] e 1int32_t keys (data cache friendly)
cid 1 (tick = 0.5) Spread = 1 e int16_t keys can be considered
o 32 keys in cache line
multiplier = 2.0 [204 J 203 [202 [201 I 200 } o 64K levels might not be enough for volatile markets
e Dense books
Viarst Bast o we can directly use it for O(1) indexing
——— (idx = (price - base) / tick)
ASK e Sparse books - sorted keys search

o Binary ... O(log N)
o Sequential ... O(N)

So here’s another idea: since prices move in discrete ticks, we don’t need
floating-point numbers.

Instead, we convert prices into integers by multiplying by the inverse of the tick
size for that contract.

That way, we avoid any floating-point weirdness, and our comparisons are fast and
exact.

We typically use a 32-bit integer for the price index, which is big enough and still fits
nicely in the cache (16 keys in a 64 byte cache line).
Using integers makes everything predictable and cache-friendly.

1) Now, if the market’s price range is tight, and the book is dense - we can just
use direct indexing.
That means we calculate the index from the integer price and use it as an
array offset - super fast and efficient O(1).

2) If the price range is wider, and the book more sparse - we use a sorted flat
vector and do a quick linear scan O(N) if it's really small - like 20 levels - or a
binary search O(logN) for deeper books.

Overall the price lookup sounds like a more general approach than direct indexing, so
we are going to analyze that in following slides. In short, using integers for prices
keeps everything exact, predictable, and really friendly to the CPU and cache.

cid
T int_price

— Bid vs. Ask price ordering
Pside
BID Key = {cid, side, int_price} @ lefe rent typeS
e Template bloat
Worst Best)
e Ternary operator — Unpredictable
multiplier = 2.0
ultipli [196 [197 [198 [199] branch
cid 1 (tick = 0.5) Spread = 1
reverse_flat_map<int32_t, T, std::less> bid;
multiplier = 2.0 [204 J 203 I 202 I 201 :[200 } reverse_flat_map<int32_t, T, std::greater> ask;
Worst Best const T* get(key_type key) const {

const auto& c = contracts[key.cid];

E const int px = price2key(c, key.price);

return key.isAsk ? c.ask.get(px) : c.bid.get(px);

ASK)

So here’s another nice trick that simplifies our design and keeps things efficient.

We want the best level at the back for both bids and asks.
That means we need opposite sort orders: bids sorted one way and asks the other.

The straightforward way is to use two different comparators - std: : less for bids
and std: :greater for asks - but that leads to two different map types, more
template code, and a branch that’s hard to predict because bid/ask traffic is
effectively random.

cid
T int_price

— Bid vs. Ask price ordering
uﬂde
BID Key = {cid, side, int_price} ® Same typeS
Woret = e |esstemplate bloat (I-cache friendly)
orsi . .
e Branchless code (Predictor friendly)
multiplier = -2.0 [-196 [-197 [-198 [-199]
cid 1 (tick = 0.5) Spread = 1
std::array<reverse_flat_map<int32_t, T>, 2> sides;
multiplier = 2.0 [204 J 203 I 202 I 201 :[200 }
const T* get(key_type key) const {

Worst Best const guto& @ = cqntracts[key.c1d]g -
const int px = price2key(c, key.price);
E const int sign = 2 * key.isAsk - 1; // +1 ask, -1 bid
return c.sides[key.isAsk].get(sign * px);

ASK)

Instead, we encode the side into the key itself.

We turn the price into an integer tick index and then multiply by a sign: +1 for asks
and -1 for bids.

That way, both sides end up in the same map type, sorted in the same direction, with
the best price at the back.

The result?

We have no unpredictable branches, just one map type for both sides, a smaller
binary, and a single direction for the prefetcher to follow

(less code is better for instruction cache).

Sequential (scalar) processing

Credit: Jobin Johnson - Branchless programming. Does it really matter?

|Fm‘DE‘EX wB ”:(Z)IDEIEX‘WB |F(3)‘DE|EX WB |F(4)‘DE|EX‘WB . ‘
(0]) (0] 2) (2) 2) (3) 3)) “) (@))
e Pipeline (superscalar) processing e Conditional jump (branch-miss)
1 1
‘IF o (IRE | 2 AN 1
))) ‘ IF | DE EX WB 1
IFo| DE | EX | WB o = = 1
2 @ | @ Jump to n = DE | EX | wB !
IFo| DE | EX | wB @ @ @ 1
@) @) @) |
IF m DE EX WB ‘ (3) (3) 3) |
) “) “)
(4) (4) (4)

Pipeline bubble

DE
[0)

IF
(n+1)

WB
(1)

|

Now let’s take a look at why it's so important to avoid branches - especially the kind that
are hard to predict, like the one we saw earlier. This brings us to a really interesting topic:
how modern processors execute instructions. An instruction isn’'t executed as one atomic
step. Internally, it's broken down into micro-operations, and it goes through several phases:
Fetch, Decode, Execute, Write Back.

What you see here is a naive model, where all micro-operations are processed sequentially -
one after the other. That's how it worked, for example, in the 80286 processor from 1982.
The first simple three-stage pipeline came in the 80386 in 1985. But modern CPUs are
superscalar. That means the pipeline is wide, and the processor can execute multiple
instructions in parallel, even within a single thread.

The problem comes with conditional jumps. After a jump, the CPU doesn’t know which
instruction comes next until the condition is evaluated. Waiting for that would stall the pipeline -
so instead, CPUs use speculative execution. They guess the outcome of the branch and
start executing the instructions ahead of time.

If the guess is correct, great - everything continues smoothly. But if the branch predictor
fails, the pipeline has to be flushed - all speculative work is thrown away, and the CPU starts
over. This creates what's called a pipeline bubble, and it can easily cost 10 or more CPU
cycles.

The component in the CPU that handles this guessing is, unsurprisingly, called the Branch
Predictor.

And this is exactly why unpredictable branches can have a massive impact on performance -
they break the flow of modern superscalar execution.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \

-e "cycles:u,instructions:u,branches:u,branch-misses:u, cache-references:u, cache-misses:u" ./benchmark
Events disabled

Context: contracts=100, elements=21, lookups=1000000, enumerations=1000000, erases=125000, avgBest=3.75%, avgAny=47.63%

flat_book<int32_t, BigVector>:
std::array<reverse_flat_map<int32_t, T>, 2> sides;

const T* get(key_type key) const {

200%2*1000000 best keys lookups in 722 ms. (avg=0.78) const auto& c = contracts[key.cid];

const int px = price2key(c, key.price);

const int sign = 2 * key.isAsk - 1; // +1 ask, -1 bid

Performance counter stats for './benchmark':) return c.sides[key.isAsk].get(sign * px);
2,681,659,994 cycles:u TooTozTT
8,419,888,691 instructions:u # 3.14 insn per cycle (83.29%)

614,426,110 branches:u (83.28%)
30,891 branch-misses:u # 0.01% of all branches (83.35%)
2,197,690,765 cache-references:u (83.42%)
116,057 cache-misses:u # 0.01% of all cache refs (83.34%)

7.904245989 seconds time elapsed

Now let’s look at this particular source of slowdown - branches, not caches.

I’m comparing two versions of the lookup. In the branchless version we keep a single
reverse_flat_map for both sides.

We convert price to an integer tick and multiply by 1 depending on side, so both BID
and ASK are stored in the same order.

Then we index an std: :array with isAsk.

There’s no if, it's compact, and the instruction cache is happy.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \
-e "cycles:u,instructions:u,branches:u,branch-misses:u, cache-references:u, cache-misses:u" ./benchmark
Events disabled
Context: contracts=100, elements=21, lookups=1000000, enumerations=1000000, erases=125000, avgBest=3.75%, avgAny=47.63%

flat_book<int32_t, BigVector>:
reverse_flat_map<int32_t, T, std::less> bid;
reverse_flat_map<int32_t, T, std::greater> ask;

200*2*1000000 best keys lookups in 1099 ms. (avg=6.79) const T* get(key_type key) const {
const auto& c = contracts[key.cid];
const int px = price2key(c, key.price);

Performance counter stats for './benchmark': return key.isAsk ? c.ask.get(px) : c.bid.get(px);
4,066,872,904 cycles:u TooTzoTT
8,224,127,474 instructions:u # 2.02 insn per cycle (83.34%)

814,142,259 branches:u (83.37%)
100,193,369 branch-misses:u # 12.31% of all branches (83.37%)
2,145,475,260 cache-references:u (83.37%)
161,980 cache-misses:u # 0.01% of all cache refs (83.32%)

8.267311714 seconds time elapsed

In the branchy version we have two different map types - std: : less for bids and
std: :greater for asks - and a ternary to choose between them.

In the benchmark the side is random, so the branch predictor guesses wrong a lot.
Every miss means the CPU has to roll back speculation and refill the pipeline.

You can see the effect: the instructions per cycle drop from about 3.1 to 2.0, the
cycle count rises from roughly 2.7B to 4.0B, and branch-misses shoot up by orders
of magnitude.

You can see that the branchful version has 200M more branches out of which 100M is
missed - so that is exactly as expected (if the branch source is basically random,
branch predictor fails to predict the correct branch is 50% of cases, just like when
tossing a coin).

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \
-e "cycles:u,instructions:u,branches:u,branch-misses:u, cache-references:u, cache-misse!

Events disabled

Context: contracts=100, elements=21, lookups=1000000, enumerations=1000000, erases=1250{

flat_book<int32_t, BigVector>:

reverse_flat_map<int32_t, T
reverse_flat_map<int32_t, T

200%2%1000000 best keys lookups in 1099 ms. (avg=0.79) [const T* get(key_type key) g
const auto& ¢ = contracts oo

const int px = price2key(

Performance counter stats for './benchmark': , return key.isAsk ? c.ask.
4,066,872,904 cycles:u
8,224,127,474 instructions:u # 2.02 insn per cycle
814,142,259 branches:u
100,193,369 branch-misses:u # 12.31% of all branches
2,145,475,260 cache-references:u
161,980 cache-misses:u # 0.01% of all cache refs

8.267311714 seconds time elapsed

The perf report points right at the hotspot - the conditional jump on isAsk - and you
can also see the lookup code duplicated, which adds pressure on the instruction
cache.

The lesson is simple: if a branch is unpredictable at runtime, try to remove it -
encode it into data or use arithmetic/array indexing.

Predictable branches are usually cheap on modern CPUs; unpredictable ones are
not.

std::vector<Contract> contracts;

contracts

eceresme]

struct Contract {

double tick;
std::array<Map, 2> maps{};
b5

__’{ ‘

)

ononooi

=) |

-{ ‘

std: :vector<Key> keys;

Alright, let’s talk about how we handle memory.

In the default world, every std: :vector uses the global heap.
That means each vector grows wherever it can find space, and we end up with

memory scattered all over.

Every time a vector needs to grow, it has to go back to the global allocator, deal with
thread safety, and potentially move things around.
It works, but it's not very cache-friendly and it’s kind of noisy.

std::pmr::vector<Contract> contracts; struct Contract {
double tick;

std::array<Map, 2> maps{};
_____________________________ contracts . LANEUD ALY

std::pmr::monotonic_buffer_resource

ﬂ-ﬁ Co— -
M---- }m---
=) oo oooooll
|
‘\
_) | -

std::pmr::vector<Key> keys;

Now, on the right side, we switch to PMR (polymorphic memory resources).
Think of it as giving the book keys their own little private memory arena.

We use a std: :pmr: :vector and a monotonic buffer, so all allocations come
from one contiguous chunk of memory.

That means we get much better locality, fewer trips to the global allocator, and the
prefetcher can do its job.

We do trade off a little flexibility because this memory doesn’t get freed until we reset
the arena, but the gains in predictability and cache performance are worth it.

reverse_flat_map<Key, Value>

Keys ... std::vector<Key>

Th

(Y) A % using Keys = std::vector<Key>;
i using Value = LevelData;
100 98 ; using VRIS = el cveeeraaiims ¢ bool erase(const Key& key, Pool* pool) {
X J ! const auto pos = reverse_flat_map::find_pos(keys_, key);
iiiiiiii struct LevelData { if (reverse_flat_map::found(keys_, key, pos)) {
; -9 const auto vit = std::begin(values_) + pos;
Values ... std::vector<Value> Eiztgi_t ¥§i;28: 8?' if (pool && pool->size() < pool->capacity(}) {
T M std::v;ctor<0rder>'orders; if constexpr (requires { vit->clear(); }) {
volume volume o vit->clear();
flags, flags, ! } else {
orders orders ! // TODO: consider using a static empty_ here
— y Pool ... std::vector<Value> *vit = {};
-) "”\“ pool->push_back(std: :move(*vit));
| Wl

using Key int32_t;

keys_.erase(std: :begin(keys_) + pos);
values_.erase(vit);
return true;

}

return false;

}

is is a small but meaningful optimization focused on preserving memory capacity

- not just in the keys_ and values_ vectors, but also inside each Value object
containing possibly nested containers.

Let’s start with erase():

When we remove a price level, we don’t destroy the value. Instead, we move it into a
shared pool - a simple std: :vector<Value>. This pool can be reused across
multiple books, for example between the bid and ask sides of contracts. But there’s a
subtle design question here: should we reset the value before putting it into the pool?

If you’re shaving nanoseconds in a closed system, maybe not.

But if you want the map implementation to be generic and reusable, you
don’t want to risk leaking data - like old order IDs or flags - between reused
values.

reverse_flat_map<Key, Value>

using Key int32_t;
using Keys std::vector<Key>;
using Value = LevelData;

struct LevelData {
uint64_t volume = 0;
uint64_t flags = 0;
} std::vector<Order> orders;

b

Values ... std::vector<Value>

Pool ... std::vector<Value>

using Values = std::vector<Value>;

bool erase(

}

vector& operator=(vector& rhs) {
clear();

EEREE A if (!rhs.empty() || capacity() < rhs.capacity())
swap(rhs);

return *this;

it->clear(); f) {
vit->clea

onsider using a static empty_ here

pool->push_back(std: :move(*vit));
+
keys_.erase(std: :begin(keys_) + pos);
values_.erase(vit);
return true;
}

return false;

The obvious way to clear a value would be to assign an empty one: *vit = {}. But

that’'s dangerous here. Why?

Because containers like std: :vector (inside Value) in C++ give up their capacity
when assigned via r-value - meaning we’d lose the very memory we were trying to

preserve. So instead, we look for better options:

e Ifthe type has a clear () method, we call that - it preserves capacity.
e Otherwise, we could assign a static empty instance using copy assignment,
which does preserve capacity if implemented properly.

In the end, you can even detect this via requires and write a reset logic that fits
each Value type. That gives us safe reuse without sacrificing performance or

memaory reuse.

reverse_flat_map<Key, Value>

Keys ... std::vector<Key> using Key = int32_t;
(Y \ S % using Keys = std::vector<Key>;
99 97 ! using Value = LevelData;

i using Values = std::vector<Value>;
~— A A /
struct LevelData {

Values ... std::vector<Value> uint64_t volume = 0;
uint64_t flags = 0;

template <typename Func> requires std::invocable<Func, Key, Value&>
Value& get_or_create(const Key& key, Func&& create_func, Pool* pool) {

P . - . const auto pos = reverse_flat_map::find_pos(keys_, key);
| std::vector<Order> orders; auto vit = std::begin(values_) + pos;
volume volume ! IBE if (! f1 cof d(k Kk
o flags, : i (.revgrse_ at_map...oun (keys_, key, pos)) {
orders orders ! | keys_.insert(std::begin(keys_) + pos, key);

if (pool && !pool->empty()) {
vit = values_.insert(vit, std::move(pool->back()));
=5 pool->pop_back();

— i Pool ... std::vector<Value>

} else {
vit = values_.emplace(vit);
}
create_func(key, *vit);
}
return *vit;

Now for the flip side - when we need to create a new price level.

The function get_or_create() checks if the level already exists; if not, we insert a
new key and reuse a Value from the pool if available.

The nice thing is: this works with any Value type. The reused instance is moved
back into the map’s values_ vector, and we immediately invoke a create_func
functor, which initializes the object to its correct logical state.

This design gives us:

e No fresh allocation unless the pool is empty,
e Memory locality preserved (reused blocks tend to stay hot in cache),
e And safe, explicit initialization using a clean, generic interface.

It's a small bit of code, but it shows the kind of engineering detail that pays off in
high-performance systems - and still stays flexible enough for general use.

reverse_flat_map<Key, Value>

Key .. int32_t
Keys .. std::vector<Key> (size = 16, capacity = 20)

Reverse key search

t3o [130 | 120 [122 [120 [w0 [11 | w0 [108 [0 [104 | 02 [0

Worst Best

Value = LevelData
Values .. std::vector<Value> (size = 16, capacity = 20)

volume | volume | volume | volume | volume | volume | volume | volume | volume | volume | volume | volume | volume | volume | volume | volume
flags, flags, flags, flags, flags, flags, flags, flags, flags, flags, flags, flags, flags, flags, flags, flags,
orders | orders | orders | orders | orders | orders | orders | orders | orders | orders | orders | orders | orders | orders | orders | orders

JUOL2oDU0000LoUUU

So here’s how we handle lookups in a really efficient way.

Instead of doing a binary search, we scan from the back of the book toward the

worse prices.

Because most lookups hit the top levels, this sequential scan is simpler, predictor

friendly and usually faster than binary search.

We also separate keys from values into two different vectors.

That way we can scan through just the keys at full speed and only load the values

once we find what we need.

This keeps everything cache-friendly (16 keys per cache line) and very efficient.

https://godbolt.org/z/E3avdféqq

template <typename Key> size_t lower_bound_desc_bin(std::span<const Key> keys, Key key) noexcept {
const auto it = std::lower_bound(keys.cbegin(), keys.cend(), key, std::greater<Key>{});
return std::distance(keys.cbhegin(), it);

}
https://godbolt.org/z/dd8c9x1nn

template <class It, class T, class Cmp> It branchless_lower_bound(It first, It last, const T& value, Cmp cmp) noexcept {
for (auto length = last - first; length > 8;) {
const auto half = length >> 1;
first += cmp(first[half], value) * (length - half);
length = half;

return first;

https://godbolt.org/z/195hWvch3

template <typename Key> size_t lower_bound_desc_rseq(std::span<const Key> keys, Key key) noexcept {
const auto rit = std::find_if(keys.crbegin(), keys.crend(), [&](auto x){ return x > key; });
return std::distance(keys.cbhegin(), rit.base());

https://godbolt.org/z/P1E66T8Gx

template <typename Key> size_t lower_bound_desc_raw(std::span<const Key> keys, Key key) noexcept {
const auto* k = keys.data();
for (auto n = keys.size(); n > 8; --n) if (k[n-1] > key) return n;
return 0;

Let’s quickly compare three ways to find a key in our sorted array.

e First, we have binary search using std: : lower_bound. It's O(log N) on
paper, but for our small and top-heavy arrays, it's not always the fastest.

e Second, there is a simple branchless_lower_bound implementation for
reference

e Fourth, we do a reverse sequential scan based on std: :find_if starting
from the best price. This matches our real-world usage and is often faster
because it's more predictable even though it is O(N) on paper.

e Third, we have a simple hand-written loop. It does the same reverse scan,
produces very nice and simple assembly, but it's not really faster than the
standard algorithm.

In short, a simple reverse scan often beats binary search for our small dataset.
And if you want to see the generated assembly, I've included Godbolt links.

https://godbolt.org/z/E3avdf6qq
https://godbolt.org/z/195hWvch3
https://godbolt.org/z/P1E66T8Gx
https://godbolt.org/z/dd8c9x1nn

// Descending lower_bound: first i where keys[i] <= key (assuming descending keys)

size_t lower_bound_desc_vec(std::span<const int32_t> keys, int32_t key) noexcept {
auto n = keys.size();

const int32_t* k = keys.data();
#if defined(__AVX512F__)
const __m512i key16 = _mm512_set1_epi32(key);
for (; n >=16; n -= 16) {
const auto i = n - 16; // [i .. n-1]
const __m512i blk = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(k + i));
// mask of lanes where blk[i] > key
const __mmask16 gt = _mm512_cmpgt_epi32_mask(blk, key16);
if (gt) [[likely]] {
// pick the lane nearest to the tail (highest set bit)
const unsigned msb = 31u - std::countl_zero(static_cast<unsigned>(gt));
return i + msb + 1; // first i with k[i] <= key

}
#endif
// Remainder (n < 16): scalar scan right -> left
for (; n > 0; --n)
if (k[n-1] > key) return n;
return 0;

https://godbolt.org/z/z4YxqsYdE

Here’s a fast path, which is my favourite right now. It's the same reverse sequential

idea, but vectorized.

https://godbolt.org/z/z4YxqsYdE

https://godbolt.org/z/z4YxqsYdE

// Descending lower_bound: first i where keys[i] <= key (assuming de¥€ending keys)
size_t lower_bound_desc_vec(std::span<const int32_t> keys, int32_t key) noexcept {

auto n = keys.size();
e e e oo oo oo o o e e
#if defined(__AVX512F__)
const __m512i key16 = _mm512_set1_epi32(key);
for (; n >=16; n -= 16) {
const auto i = n - 16; // [i .. n-1]
const __m512i blk = _mm512_loadu_si512(reinterpret_cast<const __m512i*>(k + 1
// mask of lanes where blk[i] > key
const _ _mm512_cmpgt_epi32_mask(blk, key16);

const unsigned msb = 31u - std::countl_zero(static_cast<unsigned>(gt));
return i + msb + 1; // first i with k[i] <= key

#endif
// Remainder (n < 16): scalar scan right -> left
for (; n > 0; --n)

if (k[n-1] > key) return n;
return 0;

e With AVX-512, we load 16 int32 keys at once from the tail
(_mm512_loadu_si512), compare them to the broadcasted key, and get a
bitmask of ‘greater than’.

e Then we find the first position where the sequence drops less than or equal
to the key by counting leading zeros in that mask.

e Because most lookups are at the top, the loop almost never needs a second
iteration; it returns after the first 16-key probe.

e Any remainder (<16) falls back to a tiny scalar tail.

Loads are unaligned (we scan from the end), which is fine on modern CPUs; but note
that we typically touch two cache lines.
We also compile a scalar fallback when AVX-512 isn’t available (AVX2/SSE or plain

loop).
| have created the AVX2 alternative as well (see the Godbolt link).

https://godbolt.org/z/z4YxqsYdE

Benchmark overview: lower is faster

e Various lookup methods el
° type - array<byte, 1024> = reverse_flat_map_bl_bin

@) Size = 21 mmm reverse_flat_map_rseq

. B reverse_flat_map_loop

e 10M operations 300 1 e reverse flat_map_avx2
o C reate reverse_flat_map_avx512
o Insert/Delete

m Random keys

B boost::unordered_flat_map

reverse_flat_map_bin
350 4

Time (ms)

m Hotkeys

o Enumerate

o Lookup
m Random keys
m Hotkeys

m Fixed keys

Alright, let's sum up how our flat layout compares to the baseline - the
unordered_flat_map - which is known to be really fast.

We tested the same small 20-level book with 10 million operations. We looked at build
time, lookups, enumeration, and updates.

e Build time: reverse_flat_map creation is as fast as the
unordered_flat_map

e Updates: For updates at the best level unordered_flat_map is fastest, but
reverse_flat_map is competitive because it’s just a quick push or pop
(for random keys it is worse due to the shifts).

e Enumeration: The flat layout comes out ahead when walking through prices
in order - so both flat_map and reverse_flat_map win.

e Various lookup methods
O type ... array<byte, 1024>
o size=21

e 10M operations

o Lookup
m Hotkeys
m Fixed keys

60

50

40

Time (ms)
w
8

10

Benchmark overview: lower is faster

mmm boost::unordered_flat_map
reverse_flat_map_bin
mmm reverse_flat_map_bl_bin
mmm reverse_flat_map_rseq
s reverse_flat_map_loop
mmm reverse_flat_map_avx2
reverse_flat_map_avx512

e Lookups: Our design with vectorized scanning wins out, but only for the
top-level hot lookups (for uniform lookups the hashing still has edge)

In other words, for a small, top-heavy book, our flat, reverse-ordered design with

vectorized lookups gives very nice performance.

Find (fixed keys)

e Various lookup methods 60

—e— boost::unordered_flat_map

O type ... array<byte, 1024> reverse_flat_map._bin
. _ 2 1 —e— reverse_flat_map_bl_bin
o Slze = 50 | w@=-reverse-flat MapPI86G- - = = = = — m - mm e e e e e e e e e m e m
B T TS T LTI 0 P A A e A e e AN
b lOM lOOku ps —e— reverse_flat_map_avx2

reverse_flat_map_avx512

o Fixed keys (0 ... 20)

B
3

-

Time (ms) for 10,000,000 lookups
~ w
o 8

10

Fixed key (index)

So in this test, again we’re looking at a best-case scenario where everything is hot in the
cache and the branch predictor is fully trained. We're really just measuring raw instruction
speed here.

° Binary search is okay, but its constant overhead is a bit too high for our small table.
o Branchless variant of binary search is relatively slow, but note that its
performance is extremely stable (just like the one of hash lookups)

° The scalar search versions - one hand-written and one using std: : find_if - do
better. The hand-written loop generates cleaner assembly, but the std version
scales a bit better (due to some tricks like loop unrolling).

) The vectorized version dominates and for most keys is as fast as the O(1) hash
lookup

And let’s look at the hot keys average - see the dotted lines:

The real winner is the vectorized approach. With AVX-512, we load 16 keys at once and
usually find the match in the first probe.

That gives us a steady, super-fast lookup time - about 1.2 nanoseconds on average,
compared to around 1.6 for a highly optimized boost: :unordered_flat_map.

AVX2 alternative is really good too, it just makes a step at key 8 due to second loop iteration
(exactly as expected). Both AVX2 and AVX512 then go up linearly since key 16 - also
expected for the map of size 21.

Anyway on our target workload, this vectorized approach is a clear win.

#include <simd>

A\

Extensions | [Lanesize | [0 Arithmetic types)
[xee:avx 2,512 || [stzbts J||[it | uinst |
[x ss234... ||| [2sebts ||| intt6t | winttet | foatte t |
| AR sve J[[[qzbts ||| ins2t | uns2t [foat |
| PowerPC: Altivee || | [64 bits J1 inteat | uinteat | double |
[WASM L \[32 bits L [_int128][__uint128_t][long double]/

So the vectorized lookup version is the fastest.

The only downside is that it is not a fully generic approach,; it's specialized for int32

keys - and that’s exactly why it’s the fastest.

Oris it?

Alright, here’s the exciting news for anyone who cares about making code run
faster: the next version of C++ is going to include something called standard SIMD.

Right now, if you want to use those super-fast instructions more generally, you have to
write some pretty complicated code full or preprocessor macros.
But with C++26, you can write simple, standard C++ code, and the compiler will

figure out the rest.

It's also flexible. You can choose different sizes to match different types of hardware,
and it works on different kinds of architectures like x86 and ARM or even Web

Assembly.

Basically, you get the speed of specialized instructions with the ease of writing

normal code.

In the end, it’s all about getting faster programs without having to write complicated,
hardware-specific code. It's a win for both performance and simplicity.

https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#Advanced_Vector_Extensions_2
https://en.wikipedia.org/wiki/AVX-512
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/SSE2
https://en.wikipedia.org/wiki/SSE3
https://en.wikipedia.org/wiki/SSE4
https://en.wikipedia.org/wiki/ARM_architecture_family#Advanced_SIMD_(Neon)
https://en.wikipedia.org/wiki/AArch64#Scalable_Vector_Extension_(SVE)
https://en.wikipedia.org/wiki/AltiVec
https://emscripten.org/docs/porting/simd.html

https://godbolt.org/z/bcEMd151x

template<typename Key, std::size_t W, typename Tag = simd_ns::element_aligned_tag>

inline bool scan_tail_block(Key key, const Key* keys

using abi_t simd_ns::simd_abi::fixed_size<W>;
using v_t simd_ns::simd<Key, abi_t>;
using mask_t typename v_t::mask_type;
const v_t keyv = key;
for (; n>=W; n -=W) [[likely]] {
const v_t blk(keys + n - W, Tag{});
const mask_t gt = (blk > keyv);
if (simd_ns::any_of(gt)) [[likely]] {
n += simd_ns::find_last_set(gt) + 1 - W;
return true;

}
}

return false;

std::size_t& n) noexcept {

// _mm512_set1_epi32

// _mm512_loadu_si512

// _mm512_cmpgt_epi32_mask
// mask — bool

// std::countl_zero

}

1) Let's look at our vectorized sequential lookup rewritten with c++26 SIMD

support:

You can see the generic nature of the C++ SIMD version in action.
With the same source, we can instantiate various arithmetic types (both
integral and floating point) or lane sizes 16, 8, 4, 2, even 1.

https://godbolt.org/z/bcEMd151x

https://godbolt.org/z/bcEMd151x

| template<typename Key,
std::size_t W = simd_ns::simd<Key, simd_ns::simd_abi::native<Key>>::size()>
inline std::size_t scan_cascade(Key key, const Key* keys, std::size_t n) noexcept {

if constexpr (W >= 4) {
if (scan_tail_block<Key, W>(key, keys, n)) [[likely]]

return n;
return scan_cascade<Key, W/2>(key, keys, n);
else {
for (; n>0; --n) {

if (keys[n-1] > key)

return n;

-~

}
return 0;
}
}

// Descending lower_bound: first i where keys[i] <= key (assuming descending keys)

template<typename Key>

std::size_t lower_bound_desc_simd(std::span<const Key> keys, Key key) noexcept {
return scan_cascade(key, keys.data(), keys.size());

1)

And even combine them in a cascade - without rewriting the algorithm - for
example combine 16 — 8 — 4 widths for most optimal array processing.

https://godbolt.org/z/bcEMd151x

2)

Descending lower_pound: Tirs
template<typename Key>
std::size_t lower_bound_desc_simd

return scan_cascade(key, keys.d

https://godbolt.org/z/bcEMd151x

Now, here are the three versions of the gcc 15.2 generated assembly code
that the compiler generated for AVX, AVX2 and AVX512 respectively.
It adapts automatically in compile-time: on older CPUs it uses smaller vectors,

and on newer ones it uses bigger ones.
The same code just stretches to fit the hardware.

https://godbolt.org/z/bcEMd151x

https://godbolt.org/z/bcEMd151x

et b g ot TGS, (21|

0123456789 012
6123456789 0123456789

3)

Now we can highlight the key part of the assembly - the happy path for our
typical lookups.

It's a short, efficient loop: it loads a chunk of data, compares it, makes a quick
decision, and finishes fast.

Nice compact 15 assembly instructions, which are packed together, so it is
extremely friendly to instruction cache.

We can also look at the llvm-mca (machine code analyzer) to see how the
instructions run in parallel - really efficiently on modern CPUs.

https://godbolt.org/z/bcEMd151x

Find (fixed keys)

Various lookup methods 60 7
s hecspnoriarace Sk aNARN 5 5553555555335 5535555555555355535553553s RN E 3008 ¥ .
(@] type array<byte, 1024> reverse_flat_map_avx2
. B 11 i\ P 7 e 5 e, :
o Slze = 2 1 50 { —@— reverse_flat_map_simd1l
—o— reverse_flat_map_simd2
1OM lOOkupS —e— reverse_flat_map_simd4

reverse_flat_map_simd8
40 {1 —®— reverse_flat_map_simd16
reverse_flat_map_loop

o Fixed keys (0 ... 20)

~10ms means 1 lookup/ns
o Throughput ~4 cycles
(~4 1PC)

20

Time (ms) for 10,000,000 lookups

15 instructions
o Latency ~16 cycles

Fixed key (index)

Let’s look at the same benchmark again - this time comparing various vectorized versions.
A few highlights:

° Lane 16/8 (wide vectors) give the best numbers. Just like the non-generic versions.

° Lane 4 (i.e., ~128-bit vectors for int32) is already very good and often close to the
wider cases.

) Lane 1 behaves like a hand-written scalar loop - as expected.

° Lane 2 is a bit quirky: the performance isn’t perfectly smooth and the gains over
scalar are non-existent.
That’s probably normal at such a narrow width - the vector overhead isn’t fully
amortized, so it can look “noisy.”

The key point: it's a zero-overhead abstraction. The compiler emits code that's on par with
intrinsics, so we don’t pay for being generic.

In short, we get the best of both worlds: super-fast performance and clean, standard code
that works everywhere.

To give a feel for throughput: if we do 10M lookups in ~10 ms, that’s ~1 ns per lookup (~1
B lookupsl/s).

On a ~4 GHz CPU (~4 cycles/ns), ~15 instructions per lookup works out to about 4
instructions per cycle (IPC) in this best-case scenario (cache-hot, no branch misses).

e Start with reality - Measure what matters
(instrument the system, analyze behavior, build realistic benchmarks)
e Establish a baseline
(pick a strong reference to beat)
e Pick the right tool for the job
(often it is a simple, flat, contiguous layout)
e Optimize for the hardware
(caches & prefetcher, branch predictor, SIMD)

e Respect constants, not just big-O
(O(N) can beat O(logN) of even O(1) ... ¥in some circumstances)

Start with reality - measure what matters

Don't guess. Instrument the system, log real-world access patterns, and work with
actual data. A realistic benchmark shaped by production behavior will beat
synthetic microbenchmarks.

Establish a baseline
Before you optimize anything, make sure you have solid, reproducible references.
Pick the strongest version - challenge yourself.

Pick the right tool for the job
Forget the fancy structures - most of the time, the best tool is simple: a flat array, a
tight loop, a predictable memory layout.

Optimize for the hardware
Know your cache lines. Know your prefetcher. Eliminate unpredictable branches,
use SIMD where it makes sense.

Respect constants, not just big-O
Asymptotics are for big N. But sometimes we are working with small, hot data.
And at that scale, a tight O(N) loop can outperform O(log N), and even O(1).

If we keep doing those things - choose for locality, design for hardware, and verify
with data - we’ll keep data structure fast where it actually counts.

° Hash maps
Boost::unordered documentation
] https://www.boost.org/doc/libs/1_85_0/libs/unordered/doc/html/unordered.html

o Joaquin Mufioz - Inside boost::unordered_flat_map
] https://bannalia.blogspot.com/2022/1 1/inside-boostunorderedflatmap.html
o Matt Kulukundis - Designing a Fast, Efficient, Cache-friendly Hash Table, Step by Step
n https://www.youtube.com/watch?v=ncHmEUmJZf4
Malte Skarupke - You Can Do Better than std::unordered_map
] https://www.youtube.com/watch?v=M2fKMP47slQ

. SIMD
Matthias Kretz - std::simd
[] https:/www.youtube.com/watch?v=LAJ_hywlLtMA
o Denis Yaroshevskiy - Advanced SIMD algorithms in pictures
n https://www.youtube.com/watch?v=vGcH40rkLdA
° Miscellaneous
Andrei Alexandrescu
] Fastware ... https://www.youtube.com/watch?v=04-CwDo2zpg
[] Sorting Algorithms: Speed Is Found In The Minds of People ... https:/www.youtube.com/watch?v=FJTYQYB1JQ
[Rethinking Binary Search: Improving on a Classic with Al Assistance ... https:/www.youtube.com/watch?v=FAGf5Xr8HZU
Fedor Picus
[] Branchless Programming in C++ ... https:/www.youtube.com/watch?v=g-WPhYREFjk
[] Unlocking Modern CPU Power - Next-Gen C++ Optimization Techniques ... https://www.youtube.com/watch?v=wGSSUSeal gA
o Bob Steagall ... How to Write a Custom Allocator - https:/www.youtube.com/watch?v=kSWfushlvB8
o Matt Godbolt ... https:/www.youtube.com/watch?v=28Gp3TTQYpO
o David Gross - When Nanoseconds Matter: Ultrafast Trading Systems in C++ ... https:/www.youtube.com/watch?v=sX2nF1fW7kl
o Andreas Weis - Taming Dynamic Memory: An Introduction to Custom Allocators ... https:/www.youtube.com/watch?v=IGtKstxNe14
c Ulrich Drepper - What Every Programmer Should Know About Memory ... https:/fpeople.freebsd.ora/~Istewart/articles/cpoumemory.pdf

Here’s a list of resources I've drawn from while putting this presentation together - if
you’d like to explore any of the topics deeper, these are great starting points.

https://www.boost.org/doc/libs/1_85_0/libs/unordered/doc/html/unordered.html
https://bannalia.blogspot.com/2022/11/inside-boostunorderedflatmap.html
https://www.youtube.com/watch?v=ncHmEUmJZf4
https://www.youtube.com/watch?v=M2fKMP47slQ
https://www.youtube.com/watch?v=LAJ_hywLtMA
https://www.youtube.com/watch?v=vGcH40rkLdA
https://www.youtube.com/watch?v=o4-CwDo2zpg
https://www.youtube.com/watch?v=FJJTYQYB1JQ
https://www.youtube.com/watch?v=FAGf5Xr8HZU
https://www.youtube.com/watch?v=g-WPhYREFjk
https://www.youtube.com/watch?v=wGSSUSeaLgA
https://www.youtube.com/watch?v=kSWfushlvB8
https://www.youtube.com/watch?v=28Gp3TTQYp0
https://www.youtube.com/watch?v=sX2nF1fW7kI
https://www.youtube.com/watch?v=IGtKstxNe14
https://people.freebsd.org/~lstewart/articles/cpumemory.pdf

int g_perf_ctl = -1, g_perf_ack = -1;

e Start perfin controlled mode ,
void PerfCmd(bool enable) {

(——control parameter) const auto* cmd = enable ? "enable\n" : "disable\n";
ssize_t n = write(g_perf_ctl, cmd, strlen(cmd));
® Create FIFOs once std::this_thread::sleep_for(std::chrono::seconds(1));
. char buf[4];
® In code (Slmple AP" RA”) ssize_t r = read(g_perf_ack, buf, 4);

o Open the FIFOs at startup }

o Doa \ﬁ/arm-UD) void PerfInit() {

o Send "enable\n g_perf_ctl = open("/tmp/perfctl"”, O_WRONLY|O_CLOEXEC);

o Run measured code g_perf_ack = open("/tmp/perfack", O_RDONLY|O_CLOEXEC);
“ » PerfCmd(false);

o Send “disable\n }

e Keep runs stable
. i X struct PerfScope {
(pin thread, fixed input set, repeat & average) PerfScope() { PerfCmd(true); }

~PerfScope() { PerfCmd(false); }
i

S mkfifo /tmp/perfctl /tmp/perfack
$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" ./benchmark

First bonus:

Perf can measure exactly the part we care about. | start perf stat in a special
control mode that listens on two named pipes. At program start | open those pipes,
and when | want to measure | just write enable; when I’'m done, | write disable and
wait for an ack. That lets me bracket only the inner benchmark and exclude
initialization and cleanup.

| wrap the hot section with a tiny RAIl helper so the counters are enabled for the loop
and disabled right after. | also do a quick warm-up first so caches and branch
predictors are in a steady state. For stability | pin the thread and reuse the same
inputs, then repeat a few times and average.

The result is that perf reports precise numbers for the code that matters - not the
whole process.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \
-e "cycles:u,instructions:u,branches:u,branch-misses:u, cache-references:u,cache-misses:u" ./benchmark
Events disabled

Context: contracts=100, elements=21, lookups=1000000, enumerations=1000000, erases=125000, avgBest=3.75%, avgAny=47.63%
flat_book<int32_t, BigVector>:

200*2*1000000 best keys lookups in 1265 ms. (avg=0.79)

200*2*1000000 any keys lookups in 1295 ms. (avg=10.00)

Performance counter stats for './benchmark':

9,507,982,882 cycles:u (83.34%)
38,203,289, 806 instructions:u # 4.82 insn per cycle (83.33%)
3,975,518,498 branches:u (83.33%)
2,791,628 branch-misses:u # 0.07% of all branches (83.33%)
3,701,745,497 cache-references:u (83.33%)
16,570 cache-misses:u # 0.00% of all cache refs (83.34%)

7.584814391 seconds time elapsed

Second bonus:

Earlier we looked at horizontal traversal - walking along prices.
This one is the vertical case: what happens inside a hash table when multiple prices
land in the same bucket and we have to walk a collision chain.

First, the baseline: our flat_book doesn’t hash at all.
Lookups are a short, sequential scan over a tiny, contiguous array.
Perf shows almost no cache misses and very high throughput.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \
-e "cycles:u,instructions:u,branches:u,branch-misses:u, cache-references:u,cache-misses:u" ./benchmark
Events disabled
Context: contracts=100, elements=21, lookups=1000000, enumerations=1000000, erases=125000, avgBest=3.75%, avgAny=47.63%
hash_book<int32_t, BigVector>:

200*2*1000000 best keys lookups in 1579 ms. (avg=0.79)

200*2*1000000 any keys lookups in 1650 ms. (avg=10.00)
LevelBook load factor: 0.6835381235251038

Performance counter stats for './benchmark':

12,690,731,875 cycles:u (83.33%)
49,625,960,657 instructions:u # 3.91 insn per cycle (83.34%)
6,406,248,966 branches:u (83.33%)
2,709,017 branch-misses:u # 0.04% of all branches (83.33%)
3,782,805,761 cache-references:u (83.33%)
4,000,570 cache-misses:u # 0.11% of all cache refs (83.33%)

8.451520926 seconds time elapsed

Now the three hash-table runs.
The only thing | change is the load factor - think ‘how crowded each bucket is’'.

e With a small load factor (almost one item per bucket), chains are short and
performance is OK.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \
-e "cycles:u,instructions:u,branches:u,branch-misses:u, cache-references:u,cache-misses:u" ./benchmark
Events disabled
Context: contracts=100, elements=21, lookups=1000000, enumerations=1000000, erases=125000, avgBest=3.75%, avgAny=47.63%
hash_book<int32_t, BigVector>:

200*2*1000000 best keys lookups in 1789 ms. (avg=0.79)

200*2*1000000 any keys lookups in 1775 ms. (avg=10.01)
LevelBook load factor: 5.443940375891121

Performance counter stats for './benchmark':

14,627,812,447 cycles:u (83.33%)
53,083,627,954 instructions:u # 3.63 insn per cycle (83.32%)
7,176,814,607 branches:u (83.34%)
6,282,852 branch-misses:u # 0.09% of all branches (83.35%)
4,247,376,793 cache-references:u (83.34%)
6,877,731 cache-misses:u # 0.16% of all cache refs (83.32%)

8.985525372 seconds time elapsed

e At a medium load (~5 per bucket), chains get longer; each step is a pointer
jump to an address the CPU didn’t expect.

Cache misses and time both climb and number of instructions per cycle goes down.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \
-e "cycles:u,instructions:u,branches:u,branch-misses:u, cache-references:u,cache-misses:u" ./benchmark
Events disabled
Context: contracts=100, elements=21, lookups=1000000, enumerations=1000000, erases=125000, avgBest=3.75%, avgAny=47.63%
hash_book<int32_t, BigVector>:

200*2*1000000 best keys lookups in 1887 ms. (avg=0.79)

200*2*1000000 any keys lookups in 1957 ms. (avg=10.01)
LevelBook load factor: 10.923276983094928

Performance counter stats for './benchmark':

15,909,245,429 cycles:u (83.35%)
54,711,410,421 instructions:u # 3.44 insn per cycle (83.34%)
7,535,880,012 branches:u (83.34%)
5,641,358 branch-misses:u # 0.07% of all branches (83.34%)
5,051,929,212 cache-references:u (83.32%)
17,730,881 cache-misses:u # 0.35% of all cache refs (83.32%)

9.319218237 seconds time elapsed

e With a high load (~10 per bucket), we’re effectively doing a little linked-list
walk on almost every lookup - lots of cache misses, lower IPC, and a steep
jump in wall-clock time.

$ perf stat --control="fifo:/tmp/perfctl, /tmp/perfack" \
Events disabled

hash_book<int32_t, BigVector>:

200*2*1000000 best keys lookups in 1887 ms. (avg=0.79)
200*2*1000000 any keys lookups in 1957 ms. (avg=10.01)
LevelBook load factor: 10.923276983094928

Performance counter stats for './benchmark’

9.319218237 seconds time elapsed

-e "cycles:u,instructions:u,branches:u,branch-misses:u,c

Context: contracts=100, elements=21, lookups=1000000, enum

15,909,245,429 cycles:u
54,711,410,421 instructions:u #
7,535,880,012 branches:u
5,641,358 branch-misses:u #
5,051,929,212 cache-references:u
17,730,881 cache-misses:u #

TDEC_FIXED_UNORDERED_MAP_TEMPLATE_DECL
inline typename TDEC_FIXED_UNORDERED_MAP::const_iterator TDEC_FIXED_UNORDERED_MAP::find(const Key& key) const
{

NodeRef ptr = m_buckets + bucket(key);
NodeRef node = *p
mov 8x30(5%rdi), %rax

érax, %rdx,8) Krsi
#ifdef TDEC_FIXED_UNORDERED_MAP_PROFILE_COUNT
unsigned ccount
#endif
while (node & !Pred()(key, node.key()))
test srsi, %rsi
1ad
208

D
Reference next() const { return Reference(Policy::next(m_value)); }
0x18(%rsi) , %rsi
ed () (key, node.key()))

return level;
}

else

{

typename LevelMap::const_iterator cit = m_levelMap.find(hash);
return (cit 1= m_levelMap.end()) ? static_cast<Levels>((xcit).second) : @,

ex3e(
const auto val = book.get({cid, isAsk, p})->val;

0x30 (%rsi) %xmm2, %xmm2
for (bool isAsk : {false, true}) {

cmp Srax, ¥rbx
* jne ea
for (int cid : ctx.contracts) {
a Ox4(%r13) %rox
cmp %rcx, %rbp
* ne do
movzwl ©xe (%rsp), %r13d
mov %12, %rdi

The last screenshot is perf’s hot-spot view - it lands exactly on the instructions that
advance through the collision chain.
That’s the cost of vertical traversal.

Takeaway: for our small, top-heavy books, a flat, contiguous layout avoids these

misses entirely.

If a hash table is used, sizing is critical - let the load factor creep up, and your
theoretical ‘O(1) lookup’ turns into a cache-miss parade.

