
Digging Deep for Performance
Mgr. Petr Filipský (MSc)

Table of Contents

Table of Contents...........................................................................................................................1
Lecture Notes................................................................................................................................ 2

The Importance of Speed in Trading Systems.........................................................................3
Latency vs. Throughput........................................................................................................... 4
Methods for Measuring Performance...................................................................................... 5
Memory Access and Its Impact on Performance..................................................................... 6
Data-Oriented Design and Memory Efficiency.........................................................................7
Instruction Processing in Modern CPUs.................................................................................. 8
Branch Prediction and Code Optimization...............................................................................9
Branchless Programming...................................................................................................... 10
Choosing Efficient Data Structures........................................................................................ 11
Case Study: Hash Table Dimensioning and Performance Bottlenecks................................. 12
Dynamic vs. Static Polymorphism......................................................................................... 13
Efficiency vs. Effectiveness....................................................................................................14
Summary............................................................................................................................... 15
Resources..............................................................................................................................16
Conclusion............................................................................................................................. 16

Bonus Material.............................................................................................................................17
Flat Map and Cache Efficiency.............................................................................................. 17
Branch Predictor: Advanced Considerations......................................................................... 18
Interdependencies in Performance Optimization...................................................................19
Static vs. Dynamic Polymorphism: Revisiting the Trade-offs.................................................20
Effectiveness vs. Efficiency: Practical Examples................................................................... 21

1



Lecture Notes
This document summarizes the key points from the lecture “Digging Deep for
Performance”, focusing on efficient software development in the field of High Frequency
Trading (HFT).

My name is Petr Filipský, and I work at Qminers, where I have been part of the team
since 2018. Currently, I lead the C++ development
team. I graduated in Software Engineering from the
Faculty of Mathematics and Physics at Charles
University, and the education I received here prepared
me well for my professional career. It is a privilege to
return to my alma mater and share insights from my
work.

About Qminers

● Foundation and Location… Qminers was
founded twelve years ago and is headquartered
in the heart of Prague, in the Špork Palace on
Hybernská Street.

● Core Business… Qminers specializes in High
Frequency Trading (HFT), a form of algorithmic
trading on global financial markets. Our software
operates autonomously, relying on mathematical
models developed by our analysts.

Technologies Used

● C++… The C++ team (7 developers) focuses on building trading software, as
well as tools for data preparation and processing.

● Python… The Python team (5 developers) creates visualization tools, reporting
systems, and analytical solutions that support approximately 30 analysts in their
daily tasks

Challenges and Problem Solving

During the lecture, several real-world examples are presented to illustrate the types of
challenges tackled by the C++ team. These challenges highlight the critical importance
of efficiency and precision in the HFT domain.

While the lecture emphasized issues addressed by the C++ team, it is worth noting that
the Python team and analysts face distinct challenges aligned with their specific areas
of expertise.

This presentation aims to provide an overview of the work conducted at Qminers and
the types of problems addressed by its development teams. If you find these topics
intriguing, we encourage you to visit us for a deeper understanding of our work.
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The Importance of Speed in Trading Systems
This slide illustrates why speed is a critical factor in
High Frequency Trading (HFT) and provides a
conceptual overview of a modern trading system.
On the right, we see the Exchange, which acts as
a central server responsible for receiving trading
requests (e.g., orders), maintaining the Order
Book, and executing matches via the Matching
Engine. It continuously shares updates with all
participants.

The Trader Application, on the other hand, operates as a state machine that
processes updates from the exchange and maintains an internal view of the market,
including its own copy of the order book. Within this application, strategies are
implemented to react to market changes as quickly as possible by cancelling, modifying,
or placing new orders.

Although the application typically runs within a colocation facility (the same data
center as the exchange), its internal order book is never perfectly up-to-date due to the
asynchronous nature of the system. A fundamental limitation is the speed of light,
which dictates the maximum speed at which information can propagate (1 nanosecond
corresponds to approximately 30 cm). Exchanges mitigate this limitation by ensuring
equal cable lengths and similar-quality switches for all participants within the colocation
facility, creating a level playing field. However, delays introduced by the trader
application itself can vary significantly. Faster implementations lead to a more accurate
view of the market, quicker reactions, and a competitive advantage.

To overcome the inherent limitations of CPUs (which typically achieve reaction times in
the range of microseconds), parts of the system logic can be offloaded to dedicated
hardware such as Field Programmable Gate Arrays (FPGAs). These devices operate
on nanosecond timescales, allowing for significantly faster reactions. While the trader
application functions autonomously, the workstation (depicted on the left) serves as a
regulatory requirement, enabling operators to monitor trading, adjust strategy
parameters, or halt trading entirely. However, due to the autonomous nature of the
application, significant financial losses could occur before human intervention is
possible in the event of a critical error.

Speed is thus a decisive factor in HFT, where even small delays can result in substantial
disadvantages. Optimizing both software performance and hardware utilization is
essential to maintaining competitiveness in this highly demanding domain.
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Latency vs. Throughput
When discussing efficiency in High Frequency
Trading, two key aspects are latency and
throughput. These terms represent different
dimensions of system performance, each with its
own significance depending on the context.

● Latency refers to the delay or reaction time
between a signal and a response. In trading,
low latency is critical in situations where reacting quickly to market events (e.g., a
trade affecting future prices) provides a competitive advantage. Faster reactions
can directly impact profitability and success.

● Throughput represents the number of operations a system can perform within a
given time frame. For example, when running multi-year simulations of trading
strategies across multiple instruments, high throughput enables faster execution
and minimizes cloud computing costs.

A useful analogy contrasts latency and throughput:

● Latency: How fast can you travel from Prague to Brno? The focus is on
minimizing travel time, so you can use a sports cast or a private jet.

● Throughput: How much cargo can be transported from Prague to Brno in a
week? A freight train, while slower, is more effective for moving large volumes of
goods.

Different hardware is optimized for different tasks, as demonstrated by a comparison of
processing power:

● Intel® Core™ i9-11900 Processor CPU … Peak throughput: ~166 GFLOPS (5.2 GHz × 1 core ×
32 instructions per cycle) - Cost: ~$450.

● NVIDIA A100 TENSOR CORE GPU … Peak throughput: ~312 TFLOPS - Cost: >$8000.

Key Takeaways

● Latency: Represents how quickly a single task can be completed. For instance,
the time it takes to "bring a single child into the world" (analogous to a
single-threaded computation). Optimizing latency involves leveraging modern
hardware features like superscalar CPUs and SIMD instructions, while respecting
physical limits (e.g., speed of light).

● Throughput: Reflects the system's ability to process multiple tasks concurrently.
For example, the "number of children born in a year" depends on the number of
mothers (processors/threads). Increasing throughput involves adding cores,
threads, or specialized hardware.

In trading, balancing these two aspects—low latency for real-time decision-making and
high throughput for large-scale simulations—is essential for optimal system
performance but sometimes goes against each other.
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Methods for Measuring Performance
Performance measurement is a critical aspect of
software optimization, particularly in High Frequency
Trading. There are several methods used to analyze
and improve system performance:

1. Sampling
○ At regular intervals, the program’s

current execution point (call stack) is recorded.
○ Statistically, the frequency of samples for specific code locations is

proportional to the time spent there.
2. Instrumentation… Specific code sections are instrumented to log timestamps

at key points, such as the start and end of a trading strategy's decision-making
process.

3. Emulation… The program runs on a virtual machine that emulates individual
instructions, enabling precise measurement and analysis.

Visualization Tools

The background image on the slide illustrates KCachegrind, a visualization tool for
analyzing Callgrind output. It provides insights such as Function lists, with call counts
and instruction counts, Call maps, where the area of each block corresponds to the
number of instructions executed and Call graphs, showing how functions interact.

Another example on the slide depicts a graph tracking the number of instructions
executed by various functions over time. This graph is generated daily across all trading
products, allowing us to detect performance regressions—unexpected slowdowns in
specific parts of the program that require investigation.

Advantages and Limitations of Emulation

Emulation is particularly well-suited for performance monitoring due to its stability.
Unlike sampling and instrumentation, emulation results are unaffected by background
processes or system load, ensuring consistent and reliable data.

However, emulation also has limitations. The instruction count, while useful, is not
always a reliable proxy for latency or overall performance. Modern superscalar CPUs
can process multiple instructions per cycle at clock speeds of up to 5 GHz. The "cost" of
an instruction can vary significantly, from fractions of a nanosecond to ~100
nanoseconds (e.g., in the case of a cache miss requiring access to RAM). This
variability spans three orders of magnitude, making instruction counts an imperfect
metric for measuring performance comprehensively.

By leveraging the right combination of sampling, instrumentation, and emulation, we can
gain deeper insights into performance bottlenecks and address potential regressions
effectively.
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Memory Access and Its Impact on Performance
Efficient memory access is critical for software performance, as different types of
memory exhibit distinct characteristics. Historically, linear-access memory supported
primarily sequential operations. Examples include magnetic tapes (UNIVAC, 1950s),
capable of sequentially reading ~7,200 digits per second but requiring up to a minute to
rewind, and hard disk drives (HDDs), which achieve ~150 MB/s for sequential reads
but suffer from millisecond-level delays during random access due to mechanical
repositioning of the read/write head (seek time). Optimizations like Native Command
Queuing (NCQ) reorder requests to improve throughput but can increase latency,
reinforcing the need for carefully organized access patterns.

Modern Random Access Memory (RAM), despite its name, does not provide truly
uniform access latencies. Instead, the behavior of RAM resembles linear-access
memory when considering the CPU’s cache hierarchy, which acts as an intermediary
between the processor and main memory. Access latencies differ substantially across
levels of the hierarchy:

● Level 1 Cache: ~1 ns latency.
● Level 2 Cache: ~7 ns latency.
● Level 3 Cache: ~20 ns latency.
● Main RAM: ~100 ns latency.

Efficient use of this hierarchy relies on adhering to
principles of locality:

● Temporal Locality: Recently accessed addresses
are likely to be accessed again soon.

● Spatial Locality: Addresses near a recently accessed address are likely to be accessed next.

Memory is fetched in cache lines (typically 64 bytes), so even single-byte reads load an
entire line. Predictable access patterns (e.g., sequential reads) allow the prefetcher to
preload data into the cache, reducing latency. Poorly structured memory access can
disrupt these mechanisms, resulting in cache misses and significant performance
penalties. To mitigate this, data-oriented design emphasizes structuring data and
algorithms to align with hardware behavior.

The importance of these principles is consistent across hardware, despite variations in
memory architecture. For example:

1. NAS (Intel® Celeron® J4025, 2.0 GHz): A simpler system with 2 CPUs, 32+24 KB L1 cache, 4
MB L2 cache, and 17 GB RAM.

2. Development Server (2× AMD EPYC 9454, 3.8 GHz): A complex system with 2 CPUs, each
with 48 cores and hyper-threading, featuring 48× 32+32 KB L1 cache, 48× 1 MB L2 cache, 8× 32
MB L3 cache, and 2× 756 GB RAM, as well as a NUMA (Non-Uniform Memory Access)
architecture.

While these systems differ in cache levels, memory sharing, and NUMA considerations,
the universal principles of efficient memory access—leveraging locality and
structuring data to optimize for hardware—apply across all architectures.
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Data-Oriented Design and Memory Efficiency
The hierarchical nature of modern memory
systems favors access patterns that align with
cache behavior. Data-Oriented Design (DOD)
is a technique that optimizes software by
structuring data to make better use of the
memory hierarchy, improving performance and
efficiency.

As an example, consider a scenario in game
development where you need to represent
enemies or creatures. Each creature has attributes such as position, velocity, and health
points (HP). The typical Object-Oriented Design (OOD) approach involves defining a
Beast structure containing all these attributes and maintaining an Array of Structs
(AoS). Operations such as updating positions, modifying health, or rendering would
iterate over this array and process each structure.

Comparison of Array of Structs vs. Struct of Arrays

An alternative Struct of Arrays (SoA) layout stores each attribute in a separate array.
This organization offers significant advantages when not all attributes are required for
every operation. By accessing only the relevant arrays, the program avoids
unnecessary memory fetches, leveraging the cache more effectively.

Efficiency Gains

● Position Updates: Do not require health points
○ Efficiency: 48/56​≈ 1.167→ 16.7% improvement.

● Health Updates: Do not require position or velocity.
○ Efficiency: 56/1 = 56 → 56× improvement.

● Rendering: Does not require health or velocity.
○ Efficiency: 56/24 ≈ 2.33 → 2.3× improvement.

Across all operations, the combined efficiency is:

● 3×56 / (48+1+24) ≈ 2.3 → 2.3× improvement.

Godbolt example: https://godbolt.org/z/Wbd3zjE6c

Conclusion

By restructuring data into a SoA layout, cache usage improves dramatically, allowing
more relevant data to fit within a single 64-byte cache line. This leads to measurable
performance gains, especially in scenarios where operations only require subsets of
attributes. Measuring these improvements in practice demonstrates the potential of
Data-Oriented Design for creating software that maximizes the capabilities of modern
memory architectures.
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Instruction Processing in Modern CPUs
Modern CPUs handle machine instructions
through a series of stages rather than as atomic
operations. These stages—Fetch, Decode,
Execute, andWrite Back—are further broken
down into microinstructions.

Early processors, such as the Intel 80286
(1982), processed instructions sequentially. The
introduction of a simple three-step pipeline in
the Intel 80386 (1985) marked the beginning of
parallel processing within a single thread. Today’s CPUs have evolved into superscalar
architectures, which allow multiple instructions to be processed simultaneously within a
single thread.

Pipeline and Speculative Execution

A pipeline enables instructions at different stages to overlap, maximizing throughput.
However, this process encounters challenges when instructions involve conditional
jumps. In such cases, the outcome of the jump condition determines which instruction
to execute next, creating potential delays while the CPU waits for the condition to
resolve.

To mitigate this, modern CPUs employ speculative execution, where instructions
following a conditional jump are executed in advance based on a prediction. If the
prediction is correct, the pipeline continues seamlessly. However, when the prediction
fails, the pipeline must be cleared, and all speculative computations are discarded. This
creates a pipeline bubble, which can result in a delay of ten or more clock cycles,
significantly impacting performance.

Branch Prediction

The CPU component responsible for these predictions is the Branch Predictor, which
uses sophisticated algorithms to guess the most likely path of execution. While highly
effective in most cases, even minor prediction errors can lead to substantial
performance penalties due to pipeline stalls.

By leveraging techniques such as speculative execution and branch prediction, modern
CPUs achieve remarkable instruction throughput. However, understanding these
mechanisms is essential for optimizing software to minimize pipeline disruptions and
maximize performance.
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Branch Prediction and Code Optimization
Branch prediction is critical in modern CPUs,
enabling speculative execution to prevent pipeline
stalls caused by conditional jumps. The Two-level
Adaptive Branch Predictor, used in Pentium Pro,
Pentium II, and Pentium III processors, combines
a 4-bit branch history register with a Saturating
counter, achieving ~94% prediction accuracy.
Incorrect predictions, however, result in pipeline
flushes, causing delays of 10–30 cycles (~10 ns)
or more.

Profile-Guided Optimization (PGO)

PGO enhances branch prediction at the compiler level by using runtime data. Code is
first compiled with instrumentation to collect branch outcomes during test runs,
generating a profile. This profile is then fed back into the compiler to optimize the
machine code based on the most probable branch outcomes. While PGO significantly
improves throughput, it can be less effective for latency-sensitive scenarios where rare
branches must execute quickly.

Latency-Sensitive Example: handle_trade

In a state machine processing trades, a branch evaluates whether a trade exceeds a
size threshold to trigger a response. If large trades are rare, minimizing latency for this
branch is crucial. Mis-predictions in such cases can incur:

● Pipeline Stalls: 10–30 cycles (~10 ns).
● L3 Cache Misses: Up to 300 cycles (~100 ns), potentially compounding delays.

Alternatives to Branch Prediction

1. Data-Driven Logic: Eliminate branches by processing all trades and tagging
smaller ones for later filtering. This avoids prediction penalties but requires
significant architectural changes.

2. Field Programmable Gate Arrays (FPGAs): Specialized hardware capable of
evaluating conditions and responding in tens of nanoseconds, ideal for
ultra-low-latency systems.

Balancing branch prediction, PGO, and advanced hardware solutions is essential for
optimizing throughput and latency in performance-critical systems.
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Branchless Programming
Branchless programming is a technique
that minimizes or eliminates branching in
code, often trading a higher instruction count
for better pipeline efficiency. By reducing the
reliance on conditional jumps, this approach
helps avoid branch mis-predictions and their
associated performance penalties. Below are
examples illustrating branchless
implementations and their benefits.

Example 1: side_to_sign (Godbolt example: https://godbolt.org/z/f39hf4GP8)

This function determines the sign (1 or -1) based on the side of a trade (e.g., BID or
ASK).

● Branching Version: Implemented with an if/else statement in Python or a
ternary operator in C++.

● Branchless Version: Uses an arithmetic operation to calculate the result without
branching.

Example 2: get_side (Godbolt example: https://godbolt.org/z/M761sK3xd)

This function adjusts the sign of the isSell argument based on the sign of
multiplier.

● Branching Version: Uses a ternary operator (? :) to choose between flipping or
retaining the sign.

● Branchless Version: Achieves the same result using an XOR operation.

The Godbolt Compiler Explorer provides a detailed view of the resulting assembly
instructions for both approaches. The branchless version typically produces simpler and
more predictable instruction sequences, improving performance by avoiding pipeline
stalls.

Analyzing Assembly with LLVM Machine Code Analyzer (llvm-mca)

The llvm-mca tool simulates instruction execution on a target CPU, highlighting
performance characteristics such as dispatch, execution, and retirement stages:

● D: Instruction dispatched.
● e: Instruction executing.
● E: Instruction executed.
● R: Instruction retired.

Branchless programming, combined with tools like llvm-mca and Godbolt Compiler
Explorer, enables developers to write code that better aligns with CPU architecture,
optimizing for speed and efficiency while reducing the impact of branching.
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Choosing Efficient Data Structures
For most use cases, arrays (or vectors) are the
optimal data structure. Their elements are stored in
contiguous memory, enabling sequential access,
which aligns well with modern hardware and cache
hierarchies.

Insertion Speed: Vector vs. List

The graph demonstrates the speed of inserting elements at random positions in three
data structures: vectors, deques, and lists. While theory suggests that linked lists (with
O(1) insertion) should outperform vectors (with O(N) insertion), the results show the
opposite. Despite the overhead of shifting elements, the sequential memory layout of
vectors allows hardware to process these operations efficiently, outperforming lists,
where elements are scattered in memory.

Hash Tables and Collision Management

Hash tables are another frequently used data structure. A typical hash table consists of
an array of buckets indexed by a hash of the key. When collisions occur (two keys
hashing to the same index), a collision chain is formed, often as a linked list. As the
hash table fills, these chains grow, and performance can degrade from O(1) to O(N),
resembling the drawbacks of linked lists.

The need to dimension hash tables appropriately becomes critical in trading
applications. For example, our order book software operates across many markets,
each with unique characteristics:

● Tick Size: Defines the granularity of the price grid (e.g., integer-only prices for a
tick size of one).

● Price Behavior: Some markets exhibit stable price oscillations, while others are
highly volatile.

Order Book Visualization

The accompanying image shows an order book for a single contract, where the X-axis
represents price and the Y-axis shows the quantity of lots participants want to buy (blue)
or sell (red). Each market and commodity has its own order book, influenced by factors
like tick size and volatility, requiring careful adjustment of underlying data structures to
optimize performance.

Efficiently selecting and tuning data structures like vectors and hash tables is key to
achieving high performance in trading applications, where the balance between
theoretical complexity and real-world hardware efficiency often determines success.

Improperly sized hash tables can lead to long collision chains, undermining
performance. By tailoring hash table parameters to market-specific traits, such as
volatility and tick size, these issues can be mitigated.
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Case Study: Hash Table Dimensioning and Performance Bottlenecks
A significant performance issue arose in our system after introducing a new market with
a fine price grid and high price volatility. The
hash table, used to store order book data, was
undersized, resulting in excessively long
collision chains. This caused operations on the
table to exhibit performance characteristics
similar to sequential searches in a linked list.
Each traversal between entries in the collision
chain (illustrated by green squares) typically
triggered a cache miss and sometimes a
branch misprediction, making lookups
extremely costly.

Why the Problem Wasn't Immediately Apparent

Despite monitoring performance metrics, the issue was not immediately detected
because the number of instructions executed did not increase significantly. While
instruction count is often a useful metric, it can be misleading in cases like this, where
time spent per operation is a more relevant measure.

Using Flame Graphs to Diagnose the Issue

The problem was identified through flame graph analysis, which visualizes performance
sampling data based on actual time spent in different code sections.

● Initial Graph: Highlighted bottlenecks in two areas of the trading strategy and
one in the simulator, all related to hash table lookups.

● Optimized Graph: After resizing the hash table to reduce collision chains, the
bottlenecks were eliminated.

A diff between the graphs revealed striking differences:

● Instruction Count: Minor differences, only a few percent.
● Execution Time: Differences of tens of percent, demonstrating the true

performance impact.

Lessons Learned

This case underscores the limitations of relying solely on instruction count as a
performance metric. When dealing with performance-critical systems, especially those
involving memory-bound operations, measuring actual execution time is essential.
Addressing this issue improved performance significantly and reinforced the importance
of carefully sizing data structures to match workload characteristics.
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Dynamic vs. Static Polymorphism
Polymorphism is a core concept in programming,
enabling flexibility and extensibility. Here, we
compare dynamic and static polymorphism,
focusing on their performance implications and use
cases.

Dynamic Polymorphism

Dynamic polymorphism is common in object-oriented programming. It involves an
interface, like IAnimal, and multiple implementations, such as Dog and Cat. In this
example:

● A Stats structure tracks counts of dogs and cats.
● All animals are stored in a single array, and the runAll function iterates through

this array, invoking the run method for each animal.
● Each animal increments the appropriate counter in Stats.

However, calling run is relatively expensive due to type erasure, where type-specific
information is intentionally discarded. This results in a branch (difficult for the branch
predictor to handle) or an indirection via a virtual method table (potentially causing
instruction cache misses). In either case, the runtime cannot know in advance which
version of run will be invoked, leading to performance overhead.

Static Polymorphism

Static polymorphism, often achieved using templates in C++, eliminates this overhead
by retaining full type information at compile time. For the same example: Instead of
using an interface, Animal is a concept, implemented by Cat and Dog. Cats and dogs
are stored in separate arrays, and runAll becomes a template function.

This approach allows the compiler to generate type-specific code, avoiding type erasure
and performing aggressive optimizations, as all type information is available at compile
time - like complete loop elimination.

Performance Comparison (Godbolt example: https://godbolt.org/z/qenjv9PaM)

Using the Godbolt Compiler Explorer, we can observe the assembly code for both
approaches. The dynamic version involves indirect calls or branches, while the static
version generates straightforward, predictable code, reducing overhead and improving
execution speed.

Key Takeaways

Dynamic polymorphism offers flexibility but incurs runtime costs due to type erasure and
indirect calls. Static polymorphism, where applicable, avoids these issues and allows for
optimized, type-specific code generation. Choosing the right approach depends on the
balance between runtime flexibility and performance needs.
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Efficiency vs. Effectiveness
In High Frequency Trading, speed and efficiency are
critical. Significant effort is invested into ensuring that
software not only performs correctly but also achieves
maximum efficiency. This dual focus makes the field
both challenging and rewarding.

Efficiency: Implementing Solutions Optimally

Once a requirement is identified, it must be implemented as efficiently as possible under
the given constraints. Efficiency involves designing solutions that minimize
computational costs while maximizing performance.

In trading, efficiency is not just a secondary consideration but a core necessity. Even a
correct and otherwise effective solution can fail if it is not efficient enough to function in
real-world conditions.

Effectiveness: Choosing the Right Goals

Before efficiency can even come into play, it is vital to ensure that the selected goals
align with the broader objectives of the system. The team must navigate a constant
influx of feature requests and requirements, carefully filtering to focus on those that
genuinely advance our goals.

This is far from straightforward, as the goals themselves are often dynamic and not
clearly defined. Achieving effectiveness requires a deep understanding of the system’s
context and the foresight to prioritize the most impactful requests.

Key Takeaways

Trading is one of the few fields where both efficiency and effectiveness are critical to
success:

1. Efficiency ensures optimal use of resources, allowing the solution to operate in
real-time markets.

2. Effectiveness ensures that efforts are directed toward meaningful objectives that
align with the system’s purpose.

This dual focus guarantees that software is not only functional and correct but also
impactful and competitive in demanding trading environments.
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Summary
As we approach the end of this lecture (excluding the bonus slides for further
exploration), let’s recap the key topics we’ve covered:

● Latency vs. Throughput
● Memory Hierarchy and Data-Oriented

Design
● Branch Predictor and Branchless

Programming
● Dynamic vs. Static Polymorphism
● Efficiency vs. Effectiveness

Key Insights

Today’s hardware is incredibly complex, and professional software development must
adapt to these intricacies. To build efficient and effective systems, several principles
must be followed:

1. Challenge Outdated Assumptions:
○ Rules that once applied (e.g., linked lists vs. vectors) may no longer hold

due to advances in hardware.
2. Understand the Hardware:

○ Compilers are powerful, but they can’t handle everything. Developers
need to cultivate an intuition for how modern hardware behaves.

3. Measure and Verify:
○ Intuition alone is insufficient. Measurements often reveal counterintuitive

results or the scale of a performance gap that intuition underestimated.
4. Use Diverse Metrics:

○ Relying on a single metric (e.g., instruction count) can be misleading.
Combining different types of measurements provides a more accurate
picture of performance.

Adapting to modern hardware requires not only technical knowledge but also critical
thinking, empirical validation, and the ability to challenge preconceived notions. This
combination ensures software that is both performant and reliable in today’s demanding
environments.
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Resources
The following resources were utilized during the preparation of this lecture:

● Videos:
A selection of lectures and presentations offering insights into the topics
discussed.

○ Scott Meyers: Cpu Caches and Why You Care
○ Mike Acton: Data-Oriented Design and C++
○ Matt Godbolt: Compiler Explorer 2023: What’s New?
○ Fedor Pikus: Branchless Programming in C++
○ Fedor Pikus: C++ Type Erasure Demystified
○ Mathieu Ropert: Data Oriented Design and ECS Explained

● Tools:
Links to performance analysis tools
that facilitate identifying and
addressing bottlenecks

○ Godbolt Compiler Explorer
○ Valgrind
○ Linux perf
○ Flamegraph visualization
○ Optick Profiler for games
○ Intel VTune Profiler

● Articles:
Detailed explorations of the concepts covered in this lecture, providing greater
depth than time allowed here.

● Dan Luu: Branch prediction
● Ulrich Drepper: What every programmer should know about memory
● Jobin Johnson: Branchless programming. Does it really matter?
● PACMan: Prefetch-Aware Cache Management for high performance caching
● C++ Tutorial: Intro to Hash Tables
● C++ benchmark – std::vector vs. std::list vs. std::deque
● Xaktly - Determinant & Cramer's rule
● Profile Guided Optimization (PGO) – Under the Hood
● Björn Fahller – Performance of flat maps

Conclusion
This concludes the main part of the lecture. The
goal was to provide a comprehensive overview of
key topics in software performance and their
relationship to modern hardware. It is hoped that
the content has sparked interest and provided
valuable insights into this field.

For those interested in learning more about these concepts or the work we do at
Qminers, further engagement is encouraged.

If time allows, questions are welcome. Alternatively, the bonus slides are available for a
deeper dive into some of the topics introduced earlier.
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Bonus Material
Flat Map and Cache Efficiency
Building on the earlier discussion of
Data-Oriented Design and the comparison of
Array of Structs (AoS) vs. Struct of Arrays
(SoA), a similar principle applies to the
flat_map—an associative container that maps
keys to values.

Structure of flat_map

In a flat_map, keys and values are stored in separate arrays, as opposed to
traditional maps where each key-value pair is stored together. This separation offers
significant advantages in terms of cache efficiency:

● The key array makes more efficient use of cache lines, fitting more keys into a
single cache line.

● During lookups, only the key array is traversed, and values are accessed only
after the correct key is found.

Cache Behavior

This design reduces unnecessary memory access:

1. Key Lookup: The traversal of the key array efficiently utilizes the CPU cache, as
multiple keys can fit in a single cache line.

2. Value Access: Once the correct key is located, only a single data cache miss is
incurred to access the corresponding value in the value array.

By minimizing random memory access, flat_map aligns well with modern hardware,
leveraging its cache hierarchies to achieve improved performance compared to
traditional associative containers.
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Branch Predictor: Advanced Considerations
Branch prediction is a critical mechanism in
modern CPUs, but its effectiveness depends
heavily on the predictability of the conditions being
evaluated. A compelling example of this challenge
was presented by Fedor G. Picus in his lecture
Branchless Programming in C++.

Example: Dual Conditions in a Loop

Consider a loop that evaluates two conditions (B1
and B2) stored in separate vectors. Based on the result of this disjunction (B1 || B2),
one of two operations is executed.

● Short-Circuit Evaluation: In logical disjunctions, the second condition is evaluated only if the
first is false. This creates two potential branches, as shown in the Control Flow Graph (CFG).

● Alternative Approach: If short-circuit evaluation is unnecessary, the condition can be rewritten
using bitwise operations, reducing the two branches to one.

The Challenge with Random Conditions

While it may seem that branch prediction would mitigate the cost of these conditions,
randomness in the input can significantly degrade its performance:

● Imagine B1 and B2 being filled with random values, where each condition
independently alternates between true and false. Despite the disjunction always
evaluating to true, the randomness of B1 and B2 makes each individual condition
difficult for the Branch Predictor to predict. From the CPU's perspective, the two
conditions are independent, compounding the difficulty.

Optimization Using Bitwise Operations

Replacing the disjunction with a bitwise operation simplifies the control flow:

1. Evaluate both B1 and B2 for every iteration using bitwise OR.
2. Perform a single branch based on the result of the bitwise operation.

This optimization trades additional computation for improved predictability. Although
more work is done (both conditions are always evaluated), the CPU's super-scalar
architecture can handle this efficiently, leveraging its available computational
resources.

Conclusion (Godbolt example: https://godbolt.org/z/z56bh8qWW)

Random conditions are particularly challenging for Branch Predictors because they lack
discernible patterns. By reducing the number of branches and opting for more
predictable control flows, performance can be improved, especially in cases where
predictability outweighs the cost of additional computation. This optimization, however,
should only be applied selectively, as it increases workload in exchange for more
consistent branching behavior.
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Interdependencies in Performance Optimization
Techniques like branchless programming are not
universally applicable and must be evaluated in
context. Several factors influence their
effectiveness, including:

● Branch Predictability: Well-predicted
branches are inexpensive, while poorly
predicted branches can justify branchless
transformations.

● Instruction Count: Branchless code often
executes more instructions. While modern superscalar CPUs can handle this
efficiently, additional instructions that access uncached memory can significantly
degrade performance.

Examples: Branchless vs. Branchful Code

Two extreme scenarios illustrate how context affects performance:

1. Branchless Code is Faster:
○ Arrays (existing, offset, and standalone) are traversed

sequentially, leveraging cache locality.
○ Conditions (applyOffset and applyStandalone) are poorly predicted,

making branchless code preferable.
2. Branchless Code is Slower:

○ Arrays are accessed randomly, resulting in frequent cache misses.
○ Conditions are always false, making them well-predicted and requiring no

additional work.

Impact of Transformations (Godbolt example: https://godbolt.org/z/G183q3jKW)

Aggregating the three arrays (existing, offset, and standalone) into a single
array reveals further insights:

● BranchfulSequential: Performance remains stable, likely CPU-bound due to mispredicted
branches.

● BranchlessSequential: Performance decreases slightly (14M to 19M iterations/sec), possibly
due to more complex offset calculations.

● BranchfulRandom: Performance worsens significantly (22M to 55M iterations/sec), as cache
efficiency drops when accessing one-third of the values (Struct of Arrays vs. Array of Structs).

● BranchlessRandom: Performance improves (128M to 76M iterations/sec), thanks to better
cache locality achieved by the transformation from Struct of Arrays to Array of Structs.

Key Insight

These results demonstrate that optimization rules cannot be applied in isolation—each
decision interacts with others, and “everything is interconnected.” The optimal approach
depends on understanding the entire system, from data structures to memory access
patterns and CPU behavior.
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Static vs. Dynamic Polymorphism: Revisiting the Trade-offs
As previously discussed, indirect calls introduce significant overhead, including:

● Branch mispredictions and instruction
cache misses, which disrupt pipeline
efficiency.

● Reduced compiler optimizations, as the
specific implementation is unknown at
compile time.

Avoiding Indirect Calls

In performance-critical code, avoiding indirect
calls is often preferable. This is typically achieved by replacing dynamic
polymorphism with static polymorphism (e.g., templates in C++). However, there are
cases where dynamic calls are necessary or practical, such as when using:

● Inheritance (e.g., an interface with virtual functions).
● Type erasure (e.g., std::function or similar abstractions).

When indirect calls cannot be avoided, it is critical to:

1. Use Appropriate Granularity: Structure code to minimize the frequency of
indirect calls by carefully placing the boundaries where they occur.

2. Measure and Experiment: Modern CPU architectures are complex, and
behavior is often unintuitive. Testing and refining code, ideally backed by unit
tests, is essential.

Practical Example: Loop Placement and Performance

A real-world example highlights the impact of indirect call placement:

● Initial Design: A hot loop repeatedly invoked an std::function, resulting in
up to twenty indirect calls per iteration.

● Optimization: The loop was moved inside the std::function, consolidating
the twenty calls into a single one.

The table on the slide shows the result: The optimized version, performing nearly
identical work, runs more than twice as fast. This improvement demonstrates how
careful structuring can mitigate the performance impact of dynamic calls.

Key Takeaways

When dynamic calls are unavoidable:

1. Avoid placing them in hot loops. Consolidating work into fewer calls can lead
to significant performance gains.

2. Rely on measurements to guide decisions, as modern architectures often defy
intuitive expectations.
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Effectiveness vs. Efficiency: Practical Examples
In performance-critical systems, efficiency often
takes center stage, but it is equally important to
consider effectiveness—whether the chosen
solution is truly appropriate for the task at hand.
Below are examples where an overly narrow
focus on efficiency risks missing the broader
context of effectiveness.

1. Linear Algebra: Matrix Multiplication

● Efficiency: Libraries like Intel's Math Kernel Library (MKL) are optimized for modern hardware
and excel at processing large matrices, making them highly efficient in such scenarios.

● Effectiveness: For small matrices or vectors (e.g., fewer than 16 elements), the constant
overhead of calling MKL (e.g., dynamic dispatch and initialization) can outweigh the benefits of its
sophisticated algorithms. In such cases, a simple, naive implementation is faster and better
aligned with the task. Is MKL truly the right tool for small matrices?

● Further Context: If the matrix contains a large number of zeros (e.g., block-diagonal structure),
even a highly optimized full matrix multiplication becomes wasteful. Effectiveness calls for
recognizing such patterns and replacing the operation with smaller, targeted multiplications of
individual blocks, which directly address the problem without unnecessary work.

2. Exponential Functions (Godbolt example: https://godbolt.org/z/qKPaaaxhx)

● Efficiency: Standard implementations like std::exp provide exceptional precision, but this
comes at the cost of performance. Approximate alternatives such as fmath or fastmath offer
significant speedups, trading off a small degree of accuracy for practical gains in efficiency.

● Effectiveness: Even approximate functions may be unnecessary in some cases. For example, if
an analyst specifies an exponential function with an adjustable exponent (α\alphaα), but
calibration reveals α ≈ 1.05, does the problem truly require an exponential? A simple linear
function could serve just as well within the relevant range, avoiding the computational overhead
entirely. This reflects the essence of effectiveness: asking whether the solution truly fits the
problem.

Key Insights

1. Effectiveness First: Before pursuing efficiency, confirm that the chosen tool or
approach is the right one for the task. Overlooking effectiveness can lead to
highly optimized solutions to problems that don’t need solving in the first place.

○ Is the constant overhead of a tool like MKL justified for small inputs?
○ Is a highly optimized full matrix multiplication sensible for sparse or

structured matrices?
○ Is an exponential function truly required, or could a simpler alternative

suffice?
2. Efficiency Within Context: Once the approach is validated as effective,

efficiency can be optimized by leveraging appropriate tools and techniques.

By prioritizing effectiveness, performance-critical systems can avoid wasteful
over-engineering and focus on solutions that are both appropriate and efficient.
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